Created
May 3, 2024 14:48
-
-
Save alvarobartt/4c9618987eefeaaa47f5c660ea152f41 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from distilabel.llms import ( | |
AnthropicLLM, | |
InferenceEndpointsLLM, | |
OpenAILLM, | |
) | |
from distilabel.pipeline import Pipeline | |
from distilabel.steps import ( | |
CombineColumns, | |
KeepColumns, | |
LoadDataFromDicts, | |
LoadHubDataset, | |
StepInput, | |
step, | |
) | |
from distilabel.steps.tasks import TextGeneration, UltraFeedback | |
from distilabel.steps.typing import StepOutput | |
@step(inputs=["poll_ratings"], outputs=["avg_poll_ratings"]) | |
def AveragePooling(*inputs: StepInput) -> StepOutput: | |
for input in inputs: | |
for item in input: | |
item["avg_poll_ratings"] = [ | |
sum(col) / len(col) for col in zip(*item["poll_ratings"]) | |
] | |
yield input | |
if __name__ == "__main__": | |
with Pipeline(name="replacing-judges-with-juries") as pipeline: | |
# load_dataset = LoadDataFromDicts( | |
# name="load_dataset", | |
# data=[ | |
# { | |
# "instruction": "Arianna has 12 chocolates more than Danny. Danny has 6 chocolates more than Robbie. Arianna has twice as many chocolates as Robbie has. How many chocolates does Danny have?" | |
# }, | |
# ], | |
# ) | |
load_dataset = LoadHubDataset( | |
name="load_dataset", | |
repo_id="HuggingFaceH4/instruction-dataset", | |
split="test", | |
num_examples=10, | |
output_mappings={"prompt": "instruction"}, | |
) | |
text_generation_llama3 = TextGeneration( | |
name="text_generation_llama3", | |
llm=InferenceEndpointsLLM( | |
model_id="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_id="meta-llama/Meta-Llama-3-8B-Instruct", | |
api_key=os.getenv("HF_TOKEN"), # type: ignore | |
), | |
input_batch_size=10, | |
output_mappings={"model_name": "generation_model"}, | |
) | |
text_generation_gemma = TextGeneration( | |
name="text_generation_gemma", | |
llm=InferenceEndpointsLLM( | |
model_id="google/gemma-1.1-7b-it", | |
api_key=os.getenv("HF_TOKEN"), # type: ignore | |
), | |
input_batch_size=10, | |
output_mappings={"model_name": "generation_model"}, | |
) | |
text_generation_phi3 = TextGeneration( | |
name="text_generation_phi3", | |
llm=InferenceEndpointsLLM( | |
model_id="microsoft/Phi-3-mini-4k-instruct", | |
api_key=os.getenv("HF_TOKEN"), # type: ignore | |
), | |
input_batch_size=10, | |
output_mappings={"model_name": "generation_model"}, | |
) | |
text_generation_mistral = TextGeneration( | |
name="text_generation_mistral", | |
llm=InferenceEndpointsLLM( | |
model_id="mistralai/Mistral-7B-Instruct-v0.2", | |
api_key=os.getenv("HF_TOKEN"), # type: ignore | |
), | |
input_batch_size=10, | |
output_mappings={"model_name": "generation_model"}, | |
) | |
combine_generation_columns = CombineColumns( | |
name="combine_generation_columns", | |
columns=["generation", "generation_model"], | |
output_columns=["generations", "generation_models"], | |
) | |
# ultrafeedback_haiku = UltraFeedback( | |
# name="ultrafeedback_haiku", | |
# llm=AnthropicLLM( | |
# model="claude-3-haiku-20240307", | |
# api_key=os.getenv("ANTHROPIC_API_KEY"), # type: ignore | |
# ), | |
# input_batch_size=5, | |
# aspect="instruction-following", | |
# ) | |
ultrafeedback_cmdr_plus = UltraFeedback( | |
name="ultrafeedback_cmdr_plus", | |
llm=InferenceEndpointsLLM( | |
model_id="CohereForAI/c4ai-command-r-plus", | |
api_key=os.getenv("HF_TOKEN"), # type: ignore | |
), | |
input_batch_size=5, | |
aspect="instruction-following", | |
) | |
ultrafeedback_gpt35 = UltraFeedback( | |
name="ultrafeedback_gpt35", | |
llm=OpenAILLM( | |
model="gpt-3.5-turbo-0125", | |
api_key=os.getenv("OPENAI_API_KEY"), # type: ignore | |
), | |
input_batch_size=5, | |
aspect="instruction-following", | |
) | |
combine_ultrafeedback_columns = CombineColumns( | |
name="combine_ultrafeedback_columns", | |
columns=["ratings", "rationales", "model_name"], | |
output_columns=["poll_ratings", "poll_rationales", "poll_models"], | |
) | |
avg_pooling = AveragePooling(name="avg_pooling", input_batch_size=1) | |
( | |
load_dataset | |
>> [text_generation_llama3, text_generation_gemma, text_generation_phi3, text_generation_mistral] | |
>> combine_generation_columns | |
# >> [ultrafeedback_haiku, ultrafeedback_cmdr_plus, ultrafeedback_gpt35] | |
>> [ultrafeedback_cmdr_plus, ultrafeedback_gpt35] | |
>> combine_ultrafeedback_columns | |
>> avg_pooling | |
) | |
distiset = pipeline.run( | |
parameters={ | |
"text_generation_llama3": { | |
"llm": { | |
"generation_kwargs": { | |
"temperature": 0.7, | |
"max_new_tokens": 1024, | |
"stop_sequences": ["<|eot_id|>", "<|end_of_text|>"], | |
}, | |
}, | |
}, | |
"text_generation_gemma": { | |
"llm": { | |
"generation_kwargs": { | |
"temperature": 0.7, | |
"max_new_tokens": 1024, | |
"stop_sequences": ["<eos>", "<end_of_turn>"], | |
}, | |
}, | |
}, | |
"text_generation_phi3": { | |
"llm": { | |
"generation_kwargs": { | |
"temperature": 0.7, | |
"max_new_tokens": 1024, | |
"stop_sequences": ["</s>", "<|endoftext|>"], | |
}, | |
}, | |
}, | |
"text_generation_mistral": { | |
"llm": { | |
"generation_kwargs": { | |
"temperature": 0.7, | |
"max_new_tokens": 1024, | |
"stop_sequences": ["</s>"], | |
}, | |
}, | |
}, | |
# "ultrafeedback_haiku": { | |
# "llm": {"generation_kwargs": {"temperature": 1.0, "max_tokens": 4096}}, | |
# }, | |
"ultrafeedback_cmdr_plus": { | |
"llm": { | |
"generation_kwargs": { | |
"temperature": 1.0, | |
"max_new_tokens": 4096, | |
"stop_sequences": ["<EOS_TOKEN>", "<|END_OF_TURN_TOKEN|>"], | |
}, | |
}, | |
}, | |
"ultrafeedback_gpt35": { | |
"llm": { | |
"generation_kwargs": {"temperature": 1.0, "max_new_tokens": 4096} | |
}, | |
}, | |
} | |
) | |
if distiset is not None: | |
distiset.push_to_hub( | |
"replacing-judges-with-juries-distilabel", | |
token=os.getenv("HF_TOKEN"), | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment