Last active
January 28, 2025 17:07
-
-
Save alvarobartt/9898c33eb3e9c7108d9ed2330f12a708 to your computer and use it in GitHub Desktop.
DPO fine-tuning using `trl.DPOTrainer` and Q-LoRA (4-bit)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from datasets import load_dataset | |
from peft import LoraConfig, get_peft_model | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from trl import DPOTrainer | |
if __name__ == "__main__": | |
model_name = "..." | |
dataset = load_dataset(...) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.bfloat16, | |
load_in_4bit=True, | |
use_flash_attention_2=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_quant_type="nf4", | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
model.config.pad_token_id = tokenizer.pad_token_id | |
model.config.use_cache = False | |
ref_model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.bfloat16, | |
load_in_4bit=True, | |
use_flash_attention_2=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
).eval() | |
peft_config = LoraConfig( | |
lora_alpha=128, | |
lora_dropout=0.05, | |
r=64, | |
bias="none", | |
task_type="CAUSAL_LM", | |
target_modules=[ | |
"q_proj", | |
"k_proj", | |
"v_proj", | |
], | |
) | |
model = get_peft_model(model, peft_config) | |
training_args = DPOConfig( | |
num_train_epochs=3, | |
learning_rate=5e-07, | |
per_device_train_batch_size=1, | |
do_eval=True, | |
per_device_eval_batch_size=1, | |
adam_epsilon=1e-08, | |
lr_scheduler_type="linear", | |
warmup_ratio=0.1, | |
seed=42, | |
logging_steps=100, | |
save_steps=500, | |
save_strategy="steps", | |
output_dir="./output-dir", | |
gradient_checkpointing=True, | |
bf16=True, | |
remove_unused_columns=False, | |
) | |
dpo_trainer = DPOTrainer( | |
model, | |
ref_model, | |
args=training_args, | |
beta=training_args.beta, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["test"], | |
tokenizer=tokenizer, | |
max_length=training_args.max_length, | |
max_prompt_length=training_args.max_prompt_length, | |
peft_config=peft_config, | |
) | |
dpo_trainer.train() | |
dpo_trainer.save_model() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment