Created
October 21, 2020 21:27
-
-
Save alyssadev/7c35c8049b0e7885e2cea676a193c37c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# pip3 install google_cloud_storage google_cloud_speech srt | |
from google.cloud import speech, storage | |
from sys import stderr | |
from time import sleep | |
from argparse import ArgumentParser | |
parser = ArgumentParser() | |
parser.add_argument("filename") | |
parser.add_argument("-w", "--word_time", action="store_true", help="enable_word_time_offsets") | |
parser.add_argument("-p", "--punctuation", action="store_true") | |
parser.add_argument("-l", "--lang", default="en_US") | |
parser.add_argument("-r", "--sample_rate", type=int, default=44100) | |
parser.add_argument("--bucket", default="adslivetranscribe") | |
parser.add_argument("--keep_in_storage", action="store_true") | |
args = parser.parse_args() | |
if args.word_time: | |
import srt, datetime | |
# from https://medium.com/searce/generate-srt-file-subtitles-using-google-clouds-speech-to-text-api-402b2f1da3bd | |
def subtitle_generation(response, bin_size=3): | |
"""We define a bin of time period to display the words in sync with audio. | |
Here, bin_size = 3 means each bin is of 3 secs. | |
All the words in the interval of 3 secs in result will be grouped togather.""" | |
transcriptions = [] | |
index = 0 | |
for result in response.results: | |
try: | |
if result.alternatives[0].words[0].start_time.seconds: | |
# bin start -> for first word of result | |
start_sec = result.alternatives[0].words[0].start_time.seconds | |
start_microsec = result.alternatives[0].words[0].start_time.microseconds | |
else: | |
# bin start -> For First word of response | |
start_sec = 0 | |
start_microsec = 0 | |
end_sec = start_sec + bin_size # bin end sec | |
# for last word of result | |
last_word_end_sec = result.alternatives[0].words[-1].end_time.seconds | |
last_word_end_microsec = result.alternatives[0].words[-1].end_time.microseconds | |
# bin transcript | |
transcript = result.alternatives[0].words[0].word | |
index += 1 # subtitle index | |
for i in range(len(result.alternatives[0].words) - 1): | |
try: | |
word = result.alternatives[0].words[i + 1].word | |
word_start_sec = result.alternatives[0].words[i + 1].start_time.seconds | |
word_start_microsec = result.alternatives[0].words[i + 1].start_time.microseconds # 0.001 to convert nana -> micro | |
word_end_sec = result.alternatives[0].words[i + 1].end_time.seconds | |
word_end_microsec = result.alternatives[0].words[i + 1].end_time.microseconds | |
if word_end_sec < end_sec: | |
transcript = transcript + " " + word | |
else: | |
previous_word_end_sec = result.alternatives[0].words[i].end_time.seconds | |
previous_word_end_microsec = result.alternatives[0].words[i].end_time.microseconds | |
# append bin transcript | |
transcriptions.append(srt.Subtitle(index, datetime.timedelta(0, start_sec, start_microsec), datetime.timedelta(0, previous_word_end_sec, previous_word_end_microsec), transcript)) | |
# reset bin parameters | |
start_sec = word_start_sec | |
start_microsec = word_start_microsec | |
end_sec = start_sec + bin_size | |
transcript = result.alternatives[0].words[i + 1].word | |
index += 1 | |
except IndexError: | |
pass | |
# append transcript of last transcript in bin | |
transcriptions.append(srt.Subtitle(index, datetime.timedelta(0, start_sec, start_microsec), datetime.timedelta(0, last_word_end_sec, last_word_end_microsec), transcript)) | |
index += 1 | |
except IndexError: | |
pass | |
# turn transcription list into subtitles | |
subtitles = srt.compose(transcriptions) | |
return subtitles | |
client = speech.SpeechClient() | |
config = speech.RecognitionConfig(encoding=speech.RecognitionConfig.AudioEncoding.ENCODING_UNSPECIFIED, sample_rate_hertz=args.sample_rate, language_code=args.lang, enable_automatic_punctuation=args.punctuation, enable_word_time_offsets=args.word_time) | |
storage_client = storage.Client() | |
bucket = storage_client.bucket(args.bucket) | |
blob = bucket.blob(args.filename) | |
print("uploading {}...".format(blob.name), file=stderr) | |
blob.upload_from_filename(blob.name) | |
print("done uploading, processing", file=stderr) | |
audio = speech.RecognitionAudio(uri="gs://{}/{}".format(args.bucket, blob.name)) | |
operation = client.long_running_recognize(config=config, audio=audio) | |
x = 0 | |
while not operation.done(): | |
print("Waiting" + ("." * x) + "\r", end="", file=stderr) | |
x += 1 | |
sleep(2) | |
print("", file=stderr) | |
response = operation.result() | |
if not args.word_time: | |
print("".join(r.alternatives[0].transcript for r in response.results)) | |
else: | |
print(subtitle_generation(response)) | |
if not args.keep_in_storage: | |
blob.delete() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment