Created
October 21, 2014 04:08
-
-
Save alyssafrazee/5eb6b13f282a030c471f to your computer and use it in GitHub Desktop.
PCA for GEUVADIS data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## simple analysis code for GEUVADIS data | |
## AF Oct 2014 | |
library(ballgown) #biocLite | |
library(RSkittleBrewer) #install_github | |
library(RColorBrewer) #CRAN | |
library(usefulstuff) #install_github | |
library(RCurl) #CRAN | |
load('fpkm.rda') # download at http://files.figshare.com/1625419/fpkm.rda | |
expressed = exprfilter(fpkm, cutoff=1) | |
expr = subset(expressed, 'UseThisDup == 1', genomesubset=FALSE) | |
# add lab ID to pData: | |
QCurl = getURL('https://raw.githubusercontent.com/alyssafrazee/ballgown_code/master/GEUVADIS_preprocessing/GD667.QCstats.masterfile.txt') | |
qcstats = read.table(textConnection(QCurl), sep='\t', header=TRUE) | |
pData(expr)$lab = qcstats$SeqLabNumber[match(pData(expr)$SampleID, rownames(qcstats))] | |
y = log2(texpr(expr)+1) | |
pca = prcomp(t(y)) | |
pcmat = pca$x | |
# take the transpose because we want to reduce the *transcript* | |
# dimension (not the replicate dimension) | |
# so we put the transcripts in columns) | |
# make some plots to figure out what the important stuff is: | |
cols = brewer.pal(5, 'Dark2') | |
sid = ballgown:::ss(rownames(pcmat), pattern='\\.', slot=2) | |
sum(sid != pData(expr)$dirname) #just make sure in same order | |
n = nrow(pData(expr)) | |
popinds = split(1:n, pData(expr)$population) | |
labinds = split(1:n, pData(expr)$lab) | |
rinmed = median(pData(expr)$RIN) | |
pData(expr)$hirin = ifelse(pData(expr)$RIN > rinmed, 'high', 'low') | |
rininds = split(1:n, pData(expr)$hirin) | |
plot(pcmat[,1], pcmat[,2], type='n', xlab='PC1', ylab='PC2') | |
for(i in seq_along(rininds)){ | |
points(pcmat[rininds[[i]], 1], pcmat[rininds[[i]], 2], | |
pch=19, col=makeTransparent(cols[i])) | |
} | |
pdf('population_pc.pdf') | |
plot(pcmat[,2], pcmat[,1], type='n', xlab='PC2', ylab='PC1') | |
for(i in seq_along(popinds)){ | |
ii = popinds[[i]] | |
points(pcmat[ii,2], pcmat[ii,1], pch=19, col=makeTransparent(cols[i])) | |
} | |
legend('topleft', names(popinds), col=cols, pch=19) | |
dev.off() | |
pdf('eur_yri_pc.pdf') | |
plot(pcmat[,2], pcmat[,1], type='n', xlab='PC2', ylab='PC1') | |
for(i in seq_along(popinds)){ | |
ii = popinds[[i]] | |
thecolor = ifelse(i==5, 'red', 'black') | |
points(pcmat[ii,2], pcmat[ii,1], pch=19, col=makeTransparent(thecolor)) | |
} | |
legend('topleft', c('EUR', 'YRI'), col=c('black', 'red'), pch=19) | |
dev.off() | |
## PC1 is seems to be associated with lab: | |
labcolors = brewer.pal(7, 'Set1') | |
labcolors[6] = 'black' | |
labcolors = sample(labcolors) #so the red/pink labs aren't next to each other | |
pdf('lab_effect.pdf') | |
plot(pcmat[,2], pcmat[,1], type='n', xlab='PC2', ylab='PC1') | |
for(i in seq_along(labinds)){ | |
points(pcmat[labinds[[i]], 2], pcmat[labinds[[i]], 1], | |
pch=19, col=makeTransparent(labcolors[i])) | |
} #zomg. | |
legend('topleft', col=labcolors, pch=19, paste('lab', 1:7)) | |
dev.off() | |
## PC2 is correlated with RIN: | |
cor(pcmat[,2], pData(expr)$RIN) #0.72 | |
(cor(pcmat[,2], pData(expr)$RIN))^2 #0.52 | |
pdf('rin_effect.pdf') | |
plot(pcmat[,2], pcmat[,1], type='n', xlab='PC2', ylab='PC1') | |
points(pcmat[pData(expr)$hirin=='high', 2], | |
pcmat[pData(expr)$hirin=='high', 1], | |
col=makeTransparent('dodgerblue'), | |
pch=19) | |
points(pcmat[pData(expr)$hirin=='low', 2], | |
pcmat[pData(expr)$hirin=='low', 1], | |
col=makeTransparent('orange'), | |
pch=19) | |
legend('topleft', col=c('dodgerblue', 'orange'), | |
c('high RNA quality', 'low RNA quality'), pch=19) | |
dev.off() | |
## can see some population structure in PC2 vs. PC3: | |
pdf('pc3.pdf') | |
plot(pcmat[,2], pcmat[,3], type='n', xlab='PC2', ylab='PC3', ylim=c(-50, 45)) | |
for(i in seq_along(popinds)){ | |
ii = popinds[[i]] | |
points(pcmat[ii,2], pcmat[ii,3], pch=19, col=makeTransparent(cols[i])) | |
} | |
legend('topleft', names(popinds), col=cols, pch=19) | |
dev.off() | |
## uncolored plot | |
pdf('nocolor.pdf') | |
plot(pcmat[,2], pcmat[,1], xlab='PC2', ylab='PC1', col=makeTransparent('black'), pch=19) | |
dev.off() | |
## percent variation explained: | |
names(pca) | |
pctvar = pca$sdev^2 / sum(pca$sdev^2) | |
cumulative_pctvar = cumsum(pca$sdev^2) / sum(pca$sdev^2) | |
pdf('pctvar.pdf') | |
plot(cumulative_pctvar, pch=21, bg='gray80', xlab='Principal Component Index', ylab='Cumulative Percent Variance Explained') | |
dev.off() | |
pdf('pc3_ceu_gbr_yri.pdf') | |
plot(pcmat[,2], pcmat[,3], type='n', xlab='PC2', ylab='PC3', ylim=c(-50, 45)) | |
for(i in seq_along(popinds)){ | |
ii = popinds[[i]] | |
if(i %% 2 == 1){ | |
points(pcmat[ii,2], pcmat[ii,3], pch=19, col=makeTransparent(cols[i])) | |
} | |
} | |
legend('topleft', names(popinds)[c(1,3,5)], col=cols[c(1,3,5)], pch=19) | |
dev.off() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment