Created
December 29, 2018 04:17
-
-
Save amaarora/33c21b9b7d092bcc03f9c27958145cf5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
# In[1]: | |
import numpy as np | |
import pandas as pd | |
from matplotlib import pyplot as plt | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.linear_model import LinearRegression | |
# In[2]: | |
x1 = np.linspace(0,1, num=50); | |
x2 = np.linspace(0,1, num=50); | |
# In[3]: | |
x1 | |
# In[4]: | |
x1.shape | |
# In[5]: | |
np.random.seed(42) | |
y = 2*x1 + 0.1*x2 + np.random.uniform(-0.1, 0.1, x1.shape) | |
# In[6]: | |
df = pd.DataFrame() | |
df['x1']=x1; df['x2']=x2; df['y']=y; | |
df.head() | |
# In[7]: | |
m = RandomForestRegressor(n_estimators=10) | |
# In[8]: | |
X,y = df.drop('y', axis=1), df['y'] | |
# In[9]: | |
X.head() | |
# In[10]: | |
y.head() | |
# In[11]: | |
X_train, X_val = X[:40], X[40:] | |
y_train, y_val = y[:40], y[40:] | |
# In[12]: | |
m.fit(X_train, y_train) | |
# In[13]: | |
m.feature_importances_ | |
# In[14]: | |
fi = pd.DataFrame(m.feature_importances_, index = X_train.columns, columns=['importance']); fi | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment