|
import json |
|
import numpy as np |
|
from keras.models import Sequential |
|
from keras.layers.core import Dense |
|
from keras.optimizers import sgd |
|
|
|
|
|
class Catch(object): |
|
def __init__(self, grid_size=10): |
|
self.grid_size = grid_size |
|
self.reset() |
|
|
|
def _update_state(self, action): |
|
""" |
|
Input: action and states |
|
Ouput: new states and reward |
|
""" |
|
state = self.state |
|
if action == 0: # left |
|
action = -1 |
|
elif action == 1: # stay |
|
action = 0 |
|
else: |
|
action = 1 # right |
|
f0, f1, basket = state[0] |
|
new_basket = min(max(1, basket + action), self.grid_size-1) |
|
f0 += 1 |
|
out = np.asarray([f0, f1, new_basket]) |
|
out = out[np.newaxis] |
|
|
|
assert len(out.shape) == 2 |
|
self.state = out |
|
|
|
def _draw_state(self): |
|
im_size = (self.grid_size,)*2 |
|
state = self.state[0] |
|
canvas = np.zeros(im_size) |
|
canvas[state[0], state[1]] = 1 # draw fruit |
|
canvas[-1, state[2]-1:state[2] + 2] = 1 # draw basket |
|
return canvas |
|
|
|
def _get_reward(self): |
|
fruit_row, fruit_col, basket = self.state[0] |
|
if fruit_row == self.grid_size-1: |
|
if abs(fruit_col - basket) <= 1: |
|
return 1 |
|
else: |
|
return -1 |
|
else: |
|
return 0 |
|
|
|
def _is_over(self): |
|
if self.state[0, 0] == self.grid_size-1: |
|
return True |
|
else: |
|
return False |
|
|
|
def observe(self): |
|
canvas = self._draw_state() |
|
return canvas.reshape((1, -1)) |
|
|
|
def act(self, action): |
|
self._update_state(action) |
|
reward = self._get_reward() |
|
game_over = self._is_over() |
|
return self.observe(), reward, game_over |
|
|
|
def reset(self): |
|
n = np.random.randint(0, self.grid_size-1, size=1) |
|
m = np.random.randint(1, self.grid_size-2, size=1) |
|
self.state = np.asarray([0, n, m])[np.newaxis] |
|
|
|
|
|
class ExperienceReplay(object): |
|
def __init__(self, max_memory=100, discount=.9): |
|
self.max_memory = max_memory |
|
self.memory = list() |
|
self.discount = discount |
|
|
|
def remember(self, states, game_over): |
|
# memory[i] = [[state_t, action_t, reward_t, state_t+1], game_over?] |
|
self.memory.append([states, game_over]) |
|
if len(self.memory) > self.max_memory: |
|
del self.memory[0] |
|
|
|
def get_batch(self, model, batch_size=10): |
|
len_memory = len(self.memory) |
|
num_actions = model.output_shape[-1] |
|
env_dim = self.memory[0][0][0].shape[1] |
|
inputs = np.zeros((min(len_memory, batch_size), env_dim)) |
|
targets = np.zeros((inputs.shape[0], num_actions)) |
|
for i, idx in enumerate(np.random.randint(0, len_memory, |
|
size=inputs.shape[0])): |
|
state_t, action_t, reward_t, state_tp1 = self.memory[idx][0] |
|
game_over = self.memory[idx][1] |
|
|
|
inputs[i:i+1] = state_t |
|
# There should be no target values for actions not taken. |
|
# Thou shalt not correct actions not taken #deep |
|
targets[i] = model.predict(state_t)[0] |
|
Q_sa = np.max(model.predict(state_tp1)[0]) |
|
if game_over: # if game_over is True |
|
targets[i, action_t] = reward_t |
|
else: |
|
# reward_t + gamma * max_a' Q(s', a') |
|
targets[i, action_t] = reward_t + self.discount * Q_sa |
|
return inputs, targets |
|
|
|
|
|
if __name__ == "__main__": |
|
# parameters |
|
epsilon = .1 # exploration |
|
num_actions = 3 # [move_left, stay, move_right] |
|
epoch = 1000 |
|
max_memory = 500 |
|
hidden_size = 100 |
|
batch_size = 50 |
|
grid_size = 10 |
|
|
|
model = Sequential() |
|
model.add(Dense(hidden_size, input_shape=(grid_size**2,), activation='relu')) |
|
model.add(Dense(hidden_size, activation='relu')) |
|
model.add(Dense(num_actions)) |
|
model.compile(sgd(lr=.2), "mse") |
|
|
|
# If you want to continue training from a previous model, just uncomment the line bellow |
|
# model.load_weights("model.h5") |
|
|
|
# Define environment/game |
|
env = Catch(grid_size) |
|
|
|
# Initialize experience replay object |
|
exp_replay = ExperienceReplay(max_memory=max_memory) |
|
|
|
# Train |
|
win_cnt = 0 |
|
for e in range(epoch): |
|
loss = 0. |
|
env.reset() |
|
game_over = False |
|
# get initial input |
|
input_t = env.observe() |
|
|
|
while not game_over: |
|
input_tm1 = input_t |
|
# get next action |
|
if np.random.rand() <= epsilon: |
|
action = np.random.randint(0, num_actions, size=1) |
|
else: |
|
q = model.predict(input_tm1) |
|
action = np.argmax(q[0]) |
|
|
|
# apply action, get rewards and new state |
|
input_t, reward, game_over = env.act(action) |
|
if reward == 1: |
|
win_cnt += 1 |
|
|
|
# store experience |
|
exp_replay.remember([input_tm1, action, reward, input_t], game_over) |
|
|
|
# adapt model |
|
inputs, targets = exp_replay.get_batch(model, batch_size=batch_size) |
|
|
|
loss += model.train_on_batch(inputs, targets)[0] |
|
print("Epoch {:03d}/999 | Loss {:.4f} | Win count {}".format(e, loss, win_cnt)) |
|
|
|
# Save trained model weights and architecture, this will be used by the visualization code |
|
model.save_weights("model.h5", overwrite=True) |
|
with open("model.json", "w") as outfile: |
|
json.dump(model.to_json(), outfile) |