Created
January 26, 2017 20:38
-
-
Save amanahuja/3169810d792da2cc3664c15d6007ee12 to your computer and use it in GitHub Desktop.
Calculation of gini coefficient metric
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Calculation of gini coefficient metric | |
via https://www.kaggle.com/c/ClaimPredictionChallenge/forums/t/703/code-to-calculate-normalizedgini?forumMessageId=5897#post5897 | |
I'm not the author, thant would be Kaggle user Patrick | |
See http://www.rhinorisk.com/Publications/Gini%20Coefficients.pdf | |
""" | |
def gini(actual, pred, cmpcol = 0, sortcol = 1): | |
assert( len(actual) == len(pred) ) | |
all = np.asarray(np.c_[ actual, pred, np.arange(len(actual)) ], dtype=np.float) | |
all = all[ np.lexsort((all[:,2], -1*all[:,1])) ] | |
totalLosses = all[:,0].sum() | |
giniSum = all[:,0].cumsum().sum() / totalLosses | |
giniSum -= (len(actual) + 1) / 2. | |
return giniSum / len(actual) | |
def gini_normalized(a, p): | |
return gini(a, p) / gini(a, a) | |
def test_gini(): | |
def fequ(a,b): | |
return abs( a -b) < 1e-6 | |
def T(a, p, g, n): | |
assert( fequ(gini(a,p), g) ) | |
assert( fequ(gini_normalized(a,p), n) ) | |
T([1, 2, 3], [10, 20, 30], 0.111111, 1) | |
T([1, 2, 3], [30, 20, 10], -0.111111, -1) | |
T([1, 2, 3], [0, 0, 0], -0.111111, -1) | |
T([3, 2, 1], [0, 0, 0], 0.111111, 1) | |
T([1, 2, 4, 3], [0, 0, 0, 0], -0.1, -0.8) | |
T([2, 1, 4, 3], [0, 0, 2, 1], 0.125, 1) | |
T([0, 20, 40, 0, 10], [40, 40, 10, 5, 5], 0, 0) | |
T([40, 0, 20, 0, 10], [1000000, 40, 40, 5, 5], 0.171428, 0.6) | |
T([40, 20, 10, 0, 0], [40, 20, 10, 0, 0], 0.285714, 1) | |
T([1, 1, 0, 1], [0.86, 0.26, 0.52, 0.32], -0.041666, -0.333333) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment