Skip to content

Instantly share code, notes, and snippets.

#!/usr/bin/python3
import numpy as np
import sys
import time
import math
import os
def plot(array, width, height):
size = len(array)
y = [array[int(round(k*size/width)):int(round((k+1)*size/width))] for k in range(width)]
@amarioncosmo
amarioncosmo / stdout_plot.py
Created August 30, 2018 08:04
matplotlib is for the weaks
def plot(array, width, height):
size = len(array)
y = [array[int(round(k*size/width)):int(round((k+1)*size/width))] for k in range(width)]
y = [np.mean(k) for k in y[5:]] #y[5:] when the firsts values are too big
y = height*(y-np.min(y))/(np.max(y)-np.min(y))
res = np.array(list([list('#'*int(round(y[k]))+' '*int(round(height-y[k]))) for k in range(len(y))]))
res = np.rot90(res, k=1, axes=(0,1))
for r in res:
print(''.join(r))
@amarioncosmo
amarioncosmo / keras_graph_tensorboard.py
Created August 23, 2018 08:06
Get a keras model graph in tensorboard
# Launch tensorboard
# $ tensorboard --logdir=~/tensorboard.log
import tensorflow as tf
from keras.layers import Dense, Dropout, Conv3D, MaxPooling3D, GlobalAveragePooling3D
from keras.models import Sequential
import keras.backend as K
model = Sequential()
model.add(Conv3D(8, kernel_size=(3, 3, 3), input_shape=(None,None,None,1), padding='same'))
@amarioncosmo
amarioncosmo / tdnn.py
Created August 1, 2018 10:59
TDNN Layer in Keras
from keras import backend as K
from keras.engine.base_layer import Layer, InputSpec
from keras import activations
from keras.layers.convolutional import _Conv
import numpy as np
class TDNN(_Conv):
# Original TDNN
# A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang,
# "Phoneme recognition using time-delay neural networks,"