-
-
Save amcgregor/9126d3043f2f819cdccf4a26573274d9 to your computer and use it in GitHub Desktop.
Some mongoengine vs pymongo timing comparisons based on https://gist.github.com/BeardedSteve/a1484adcf7475f62028e/ and discussion at http://stackoverflow.com/questions/35257305/mongoengine-is-very-slow-on-large-documents-comapred-to-native-pymongo-usage Example using Embeded documents, with additional comparison against Marrow Mongo and PyModm.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import datetime | |
import itertools | |
import random | |
import sys | |
import timeit | |
from collections import defaultdict | |
from pymongo import version as pymongo_version | |
from distutils.version import StrictVersion | |
import mongoengine as db | |
from pycallgraph.output.graphviz import GraphvizOutput | |
from pycallgraph.pycallgraph import PyCallGraph | |
db.connect("test-dicts") | |
class Data(db.EmbeddedDocument): | |
subf0 = db.ListField(db.IntField()) | |
subf1 = db.ListField(db.IntField()) | |
subf2 = db.ListField(db.IntField()) | |
subf3 = db.ListField(db.IntField()) | |
subf4 = db.ListField(db.IntField()) | |
class MyDictModel(db.Document): | |
date = db.DateTimeField(required=True, default=datetime.date.today) | |
data_dict_1 = db.DictField() | |
class MyEmbedModel(db.Document): | |
date = db.DateTimeField(required=True, default=datetime.date.today) | |
data_dict_1 = db.EmbeddedDocumentField(Data) | |
MyDictModel.drop_collection() | |
MyEmbedModel.drop_collection() | |
data = ["subf{}".format(f) for f in range(5)] | |
m_dict = MyDictModel() | |
my_dict = dict([(d, list(random.sample(range(50000), 20000))) for d in data]) | |
m_dict.data_dict_1 = my_dict | |
m_dict.save() | |
m_embed = MyEmbedModel() | |
my_data = Data() | |
for f in data: | |
my_data[f] = list(random.sample(range(50000), 20000)) | |
m_embed.data_dict_1 = my_data | |
m_embed.save() | |
def pymongo_dict_doc(): | |
r = db.connection.get_connection()["test-dicts"]['my_dict_model'].find_one() | |
print((type(r), len(r))) | |
return r | |
def pymongo_embed_doc(): | |
r = db.connection.get_connection()["test-dicts"]['my_embed_model'].find_one() | |
print((type(r), len(r))) | |
return r | |
def mongoengine_dict_doc(): | |
r = MyDictModel.objects.first() | |
print((type(r.data_dict_1), len(r.data_dict_1))) | |
return r | |
def mongoengine_embed_doc(): | |
r = MyEmbedModel.objects.first() | |
print((type(r.data_dict_1), len(r.data_dict_1))) | |
return r | |
def mongoengine_dict_docp(): | |
r = MyDictModel.objects.as_pymongo().first() | |
print((type(r), len(r))) | |
return r | |
def mongoengine_embed_docp(): | |
r = MyEmbedModel.objects.as_pymongo().first() | |
print((type(r), len(r))) | |
return r | |
def mongoengine_agg_doc(): | |
r = list(MyDictModel.objects.aggregate({"$limit":1}))[0] | |
print((type(r), len(r))) | |
return r | |
def mongoengine_agg_embed(): | |
r = list(MyEmbedModel.objects.aggregate({"$limit":1}))[0] | |
print((type(r), len(r))) | |
return r | |
#return | |
if __name__ == '__main__': | |
print("pymongo with dict took {:2.2f}s".format(timeit.timeit(pymongo_dict_doc, number=10))) | |
print("pymongo with embed took {:2.2f}s".format(timeit.timeit(pymongo_embed_doc, number=10))) | |
print("mongoengine with dict took {:2.2f}s".format(timeit.timeit(mongoengine_dict_doc, number=10))) | |
print("mongoengine with embed took {:2.2f}s".format( timeit.timeit(mongoengine_embed_doc, number=10))) | |
print("mongoengine with dict as_pymongo() took {:2.2f}s".format(timeit.timeit(mongoengine_dict_docp, number=10))) | |
print("mongoengine with embed as_pymongo() took {:2.2f}s".format( timeit.timeit(mongoengine_embed_docp, number=10))) | |
if StrictVersion(pymongo_version) < StrictVersion('3.0.0'): | |
print("Skipping aggregation on pymongo < 3.x") | |
else: | |
print("mongoengine aggregation with dict took {:2.2f}s".format( timeit.timeit(mongoengine_agg_doc, number=10))) | |
print("mongoengine aggregation with embed took {:2.2f}s".format( timeit.timeit(mongoengine_agg_embed, number=10))) | |
out1 = GraphvizOutput() | |
out1.output_file = "viz_embed.png" | |
out2 = GraphvizOutput() | |
out2.output_file = "viz_dict.png" | |
with PyCallGraph(output=out1): | |
mongoengine_embed_doc() | |
with PyCallGraph(output=out2): | |
mongoengine_dict_doc() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment