Created
March 1, 2016 13:36
-
-
Save ameasure/25403119908e52869716 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import datetime | |
import pandas as pd | |
import numpy as np | |
np.random.seed(42) | |
from sklearn.preprocessing import LabelEncoder | |
import theano | |
import keras | |
from keras.models import Sequential, Graph | |
from keras.layers.convolutional import Convolution1D, MaxPooling1D, Convolution2D, MaxPooling2D | |
from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape, Merge | |
from keras.layers.recurrent import LSTM | |
from keras.layers.normalization import BatchNormalization | |
from keras.layers.embeddings import Embedding | |
from keras.optimizers import SGD | |
from keras.utils import np_utils | |
from keras.preprocessing.text import Tokenizer | |
from keras.preprocessing.sequence import pad_sequences | |
from keras.regularizers import l2 | |
from embed_preprocessing import get_initial_embeddings | |
from msha_extractor import get_data | |
max_len = 100 | |
embedding_size = 300 | |
batch_size = 128 | |
code_type = 'ACTIVITY_CD' | |
raw_train, raw_valid, raw_test = get_data(n_train=50000, n_valid=0, n_test=10000) | |
raw_train_labels = raw_train[code_type] | |
raw_valid_labels = raw_valid[code_type] | |
raw_test_labels = raw_test[code_type] | |
labeler = LabelEncoder() | |
labels = set(raw_train[code_type].tolist() + raw_test[code_type].tolist()) | |
labeler.fit(list(labels)) | |
nb_classes = len(set(labels)) | |
print('nb_classes = %s' % nb_classes) | |
y_train = labeler.transform(raw_train_labels) | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
y_valid = labeler.transform(raw_valid_labels) | |
Y_valid = np_utils.to_categorical(y_valid, nb_classes) | |
y_test = labeler.transform(raw_test_labels) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
print 'Tokenizing X_train' | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts(raw_train['NARRATIVE']) | |
tokenizer.word_index['BLANK_EMBEDDING'] = 0 | |
X_train = tokenizer.texts_to_sequences(raw_train['NARRATIVE']) | |
X_valid = tokenizer.texts_to_sequences(raw_valid['NARRATIVE']) | |
X_test = tokenizer.texts_to_sequences(raw_test['NARRATIVE']) | |
X_train = pad_sequences(X_train, maxlen=max_len) | |
X_valid = pad_sequences(X_valid, maxlen=max_len) | |
X_test = pad_sequences(X_test, maxlen=max_len) | |
print('X_train shape:', X_train.shape) | |
print('X_valid shape:', X_valid.shape) | |
print('X_test shape:', X_test.shape) | |
initial_embeddings = get_initial_embeddings(tokenizer.word_index) | |
vocab_size = len(tokenizer.word_index) | |
filter_length = 3 | |
nb_filter = 300 | |
model = Sequential() | |
model.add(Embedding(vocab_size, embedding_size, input_length=max_len, weights=[initial_embeddings])) | |
#model.add(Convolution1D(nb_filter=nb_filter, | |
# filter_length=filter_length, | |
# border_mode='valid', | |
# activation='relu', | |
# subsample_length=1)) | |
model.add(LSTM(150, dropout_W=0.5, dropout_U=0.5, return_sequences=True)) | |
model.add(MaxPooling1D(pool_length=3)) | |
model.add(Flatten()) | |
model.add(Dropout(0.5)) | |
model.add(Dense(output_dim=nb_classes)) | |
model.add(Activation('sigmoid')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer='adam') | |
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=5, | |
verbose=True, show_accuracy=True, validation_split=.05) | |
score = model.evaluate(X_test, Y_test, batch_size=batch_size, show_accuracy=True) | |
print('Test score:', score[0]) | |
print('Test accuracy:', score[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The error message, edited so it fits in here is:
Using gpu device 0: GeForce GTX 660 (CNMeM is disabled, CuDNN not available)
Using Theano backend.
nb_classes = 96
Tokenizing X_train
('X_train shape:', (50000L, 100L))
('X_valid shape:', (0L, 100L))
('X_test shape:', (10000L, 100L))
4543 words received random embeddings because previously unseen
Thousands of lines of the same C code repeated again and again
mod.cu
mod.cu(9723) : fatal error C1061: compiler limit : blocks nested too deeply
['nvcc', '-shared', '-O3', '-use_fast_math', '-arch=sm_30', '-Xlinker', '/DEBUG', '-D HAVE_ROUND', '-m64', '-Xcompiler', '-DCUDA_NDARRAY_CUH=18715462c72ed6afcd7ca5d52813ce90,-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION,/Zi,/MD', '-IC:\Users\ameasure\AppData\Local\Theano\compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_58_Stepping_9_GenuineIntel-2.7.9-64\cuda_ndarray', '-IC:\Users\ameasure\Anaconda\lib\site-packages\numpy\core\include', '-IC:\Users\ameasure\Anaconda\include', '-IC:\Users\ameasure\Anaconda\lib\site-packages\theano\gof', '-IC:\Users\ameasure\Anaconda\lib\site-packages\theano\sandbox\cuda', '-o', 'C:\Users\ameasure\AppData\Local\Theano\compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_58_Stepping_9_GenuineIntel-2.7.9-64\tmpdhx2d1\3f2660fbe493f47f2f69a326682253d6.pyd', 'mod.cu', '-LC:\Users\ameasure\AppData\Local\Theano\compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_58_Stepping_9_GenuineIntel-2.7.9-64\cuda_ndarray', '-LC:\Users\ameasure\Anaconda\libs', '-LC:\Users\ameasure\Anaconda', '-lcudart', '-lcublas', '-lcuda_ndarray', '-lpython27']
Thousands more lines of the same C code repeated again and again
Traceback (most recent call last):
File "", line 1, in
runfile('C:/Users/ameasure/Desktop/Programming Projects/cnn/cnn_lstm.py', wdir='C:/Users/ameasure/Desktop/Programming Projects/cnn')
File "C:\Users\ameasure\Anaconda\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 685, in runfile
execfile(filename, namespace)
File "C:\Users\ameasure\Anaconda\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 71, in execfile
exec(compile(scripttext, filename, 'exec'), glob, loc)
File "C:/Users/ameasure/Desktop/Programming Projects/cnn/cnn_lstm.py", line 93, in
optimizer='adam')
File "C:\Users\ameasure\Anaconda\lib\site-packages\keras\models.py", line 547, in compile
self._train = K.function(train_ins, [train_loss], updates=updates)
File "C:\Users\ameasure\Anaconda\lib\site-packages\keras\backend\theano_backend.py", line 452, in function
return Function(inputs, outputs, updates=updates)
File "C:\Users\ameasure\Anaconda\lib\site-packages\keras\backend\theano_backend.py", line 444, in init
allow_input_downcast=True, **kwargs)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\compile\function.py", line 320, in function
output_keys=output_keys)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\compile\pfunc.py", line 479, in pfunc
output_keys=output_keys)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\compile\function_module.py", line 1777, in orig_function
defaults)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\compile\function_module.py", line 1641, in create
input_storage=input_storage_lists, storage_map=storage_map)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\link.py", line 690, in make_thunk
storage_map=storage_map)[:3]
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\vm.py", line 1003, in make_all
no_recycling))
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\sandbox\cuda__init__.py", line 257, in make_thunk
compute_map, no_recycling)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\op.py", line 970, in make_thunk
no_recycling)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\op.py", line 879, in make_c_thunk
output_storage=node_output_storage)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\cc.py", line 1200, in make_thunk
keep_lock=keep_lock)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\cc.py", line 1143, in compile
keep_lock=keep_lock)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\cc.py", line 1595, in cthunk_factory
key=key, lnk=self, keep_lock=keep_lock)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\cmodule.py", line 1142, in module_from_key
module = lnk.compile_cmodule(location)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\gof\cc.py", line 1506, in compile_cmodule
preargs=preargs)
File "C:\Users\ameasure\Anaconda\lib\site-packages\theano\sandbox\cuda\nvcc_compiler.py", line 396, in compile_str
'for cmd', ' '.join(cmd))
Exception: ('The following error happened while compiling the node', GpuJoin(TensorConstant{1}, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0, GpuAlloc.0), '\n', 'nvcc return status', 2, 'for cmd', 'nvcc -shared -O3 -use_fast_math -arch=sm_30 -Xlinker /DEBUG -D HAVE_ROUND -m64 -Xcompiler -DCUDA_NDARRAY_CUH=18715462c72ed6afcd7ca5d52813ce90,-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION,/Zi,/MD -IC:\Users\ameasure\AppData\Local\Theano\compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_58_Stepping_9_GenuineIntel-2.7.9-64\cuda_ndarray -IC:\Users\ameasure\Anaconda\lib\site-packages\numpy\core\include -IC:\Users\ameasure\Anaconda\include -IC:\Users\ameasure\Anaconda\lib\site-packages\theano\gof -IC:\Users\ameasure\Anaconda\lib\site-packages\theano\sandbox\cuda -o C:\Users\ameasure\AppData\Local\Theano\compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_58_Stepping_9_GenuineIntel-2.7.9-64\tmpdhx2d1\3f2660fbe493f47f2f69a326682253d6.pyd mod.cu -LC:\Users\ameasure\AppData\Local\Theano\compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_58_Stepping_9_GenuineIntel-2.7.9-64\cuda_ndarray -LC:\Users\ameasure\Anaconda\libs -LC:\Users\ameasure\Anaconda -lcudart -lcublas -lcuda_ndarray -lpython27', '[GpuJoin(TensorConstant{1}, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>, <CudaNdarrayType(float32, col)>)]')