Created
February 19, 2013 19:42
-
-
Save amiller/4989147 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| {- | |
| Andrew Miller - RegTree.agda | |
| An attempt at translating "Exploring the Regular Tree Types" from Epigram | |
| http://strictlypositive.org/regular.pdf | |
| -} | |
| module RegTree where | |
| open import Data.Product | |
| open import Data.Sum | |
| open import Data.Fin | |
| open import Data.Unit | |
| open import Data.Empty | |
| open import Data.Nat | |
| data Code : ℕ → Set₁ where | |
| E : ∀ {n} → Code n -- Empty | |
| U : ∀ {n} → Code n -- Unit | |
| K : ∀ {n} → Set → Code n -- Constant K | |
| _⊗_ : ∀ {n} → Code n → Code n → Code n | |
| _⊕_ : ∀ {n} → Code n → Code n → Code n | |
| Wk : ∀ {n} → Code n → Code (suc n) | |
| Z : ∀ {n} → Code (suc n) -- Identity | |
| Let : ∀ {n} → Code n → Code (suc n) → Code n | |
| data Tel : ℕ → Set₁ where | |
| ε : Tel zero | |
| _::_ : ∀ {n} → Tel n → Code n → Tel (suc n) | |
| ⟦_⟧ : ∀ {n} → Code n → Tel n → Set | |
| ⟦ E ⟧ Γ = ⊥ | |
| ⟦ U ⟧ Γ = ⊤ | |
| ⟦ K A ⟧ Γ = A | |
| ⟦ F ⊗ G ⟧ Γ = ⟦ F ⟧ Γ × ⟦ G ⟧ Γ | |
| ⟦ F ⊕ G ⟧ Γ = ⟦ F ⟧ Γ ⊎ ⟦ G ⟧ Γ | |
| ⟦ Wk T ⟧ (Γ :: _) = ⟦ T ⟧ Γ | |
| ⟦ Z ⟧ (Γ :: T) = ⟦ T ⟧ Γ | |
| ⟦ Let S T ⟧ Γ = ⟦ T ⟧ (Γ :: S) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment