Created
August 24, 2020 20:35
-
-
Save amirhaleem/d0eefdbfdbd76f5a96f3f85732f4939a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <lmic.h> | |
#include <hal/hal.h> | |
#include <SPI.h> | |
#include <Adafruit_ZeroTimer.h> | |
#include <Adafruit_GPS.h> | |
// what's the name of the hardware serial port? | |
#define GPSSerial Serial1 | |
#define CFG_sx1276_radio 1 | |
// Connect to the GPS on the hardware port | |
Adafruit_GPS GPS(&GPSSerial); | |
// Timer for reading GPS data | |
const uint8_t timer_number = 3; | |
Adafruit_ZeroTimer timer = Adafruit_ZeroTimer(timer_number); | |
//define the interrupt handlers | |
void TC3_Handler() { | |
Adafruit_ZeroTimer::timerHandler(3); | |
} | |
void TC4_Handler() { | |
Adafruit_ZeroTimer::timerHandler(4); | |
} | |
void TC5_Handler() { | |
Adafruit_ZeroTimer::timerHandler(5); | |
} | |
#define GPSECHO true | |
// | |
// For normal use, we require that you edit the sketch to replace FILLMEIN | |
// with values assigned by the TTN console. However, for regression tests, | |
// we want to be able to compile these scripts. The regression tests define | |
// COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non- | |
// working but innocuous value. | |
// | |
#ifdef COMPILE_REGRESSION_TEST | |
#define FILLMEIN 0 | |
#else | |
#warning "You must replace the values marked FILLMEIN with real values from the TTN control panel!" | |
#define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN) | |
#endif | |
// This EUI must be in little-endian format, so least-significant-byte | |
// first. When copying an EUI from ttnctl output, this means to reverse | |
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, | |
// 0x70. | |
static const u1_t PROGMEM APPEUI[8] = { 0x67, 0x59, 0x86, 0x87, 0xD0, 0xC1, 0xA3, 0xB3 }; | |
void os_getArtEui (u1_t* buf) { | |
memcpy_P(buf, APPEUI, 8); | |
} | |
// This should also be in little endian format, see above. | |
static const u1_t PROGMEM DEVEUI[8] = { 0x9A, 0xBB, 0x55, 0xBB, 0x30, 0xBE, 0x75, 0xF4 }; | |
void os_getDevEui (u1_t* buf) { | |
memcpy_P(buf, DEVEUI, 8); | |
} | |
// This key should be in big endian format (or, since it is not really a | |
// number but a block of memory, endianness does not really apply). In | |
// practice, a key taken from the TTN console can be copied as-is. | |
static const u1_t PROGMEM APPKEY[16] = { 0xF3, 0x35, 0xC1, 0x4B, 0x26, 0x0D, 0x54, 0x74, 0xAC, 0x01, 0xCF, 0x05, 0x67, 0xF6, 0xC9, 0x17 }; | |
void os_getDevKey (u1_t* buf) { | |
memcpy_P(buf, APPKEY, 16); | |
} | |
// payload to send to TTN gateway | |
static osjob_t sendjob; | |
const uint8_t wait_fix_interval = 5; | |
// Schedule TX every this many seconds (might become longer due to duty | |
// cycle limitations). | |
const unsigned TX_INTERVAL = 5; | |
// Pin mapping for Adafruit Feather M0 LoRa | |
const lmic_pinmap lmic_pins = { | |
.nss = 8, | |
.rxtx = LMIC_UNUSED_PIN, | |
.rst = 4, | |
.dio = {3, 6, LMIC_UNUSED_PIN}, | |
.rxtx_rx_active = 0, | |
.rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB | |
.spi_freq = 8000000, | |
}; | |
void onEvent (ev_t ev) { | |
Serial.print(os_getTime()); | |
Serial.print(": "); | |
switch (ev) { | |
case EV_SCAN_TIMEOUT: | |
Serial.println(F("EV_SCAN_TIMEOUT")); | |
break; | |
case EV_BEACON_FOUND: | |
Serial.println(F("EV_BEACON_FOUND")); | |
break; | |
case EV_BEACON_MISSED: | |
Serial.println(F("EV_BEACON_MISSED")); | |
break; | |
case EV_BEACON_TRACKED: | |
Serial.println(F("EV_BEACON_TRACKED")); | |
break; | |
case EV_JOINING: | |
Serial.println(F("EV_JOINING")); | |
break; | |
case EV_JOINED: | |
Serial.println(F("EV_JOINED")); | |
{ | |
u4_t netid = 0; | |
devaddr_t devaddr = 0; | |
u1_t nwkKey[16]; | |
u1_t artKey[16]; | |
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey); | |
Serial.print("netid: "); | |
Serial.println(netid, DEC); | |
Serial.print("devaddr: "); | |
Serial.println(devaddr, HEX); | |
Serial.print("artKey: "); | |
for (int i = 0; i < sizeof(artKey); ++i) { | |
if (i != 0) | |
Serial.print("-"); | |
Serial.print(artKey[i], HEX); | |
} | |
Serial.println(""); | |
Serial.print("nwkKey: "); | |
for (int i = 0; i < sizeof(nwkKey); ++i) { | |
if (i != 0) | |
Serial.print("-"); | |
Serial.print(nwkKey[i], HEX); | |
} | |
Serial.println(""); | |
} | |
// Disable link check validation (automatically enabled | |
// during join, but because slow data rates change max TX | |
// size, we don't use it in this example. | |
LMIC_setLinkCheckMode(0); | |
break; | |
/* | |
|| This event is defined but not used in the code. No | |
|| point in wasting codespace on it. | |
|| | |
|| case EV_RFU1: | |
|| Serial.println(F("EV_RFU1")); | |
|| break; | |
*/ | |
case EV_JOIN_FAILED: | |
Serial.println(F("EV_JOIN_FAILED")); | |
break; | |
case EV_REJOIN_FAILED: | |
Serial.println(F("EV_REJOIN_FAILED")); | |
break; | |
break; | |
case EV_TXCOMPLETE: | |
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); | |
if (LMIC.txrxFlags & TXRX_ACK) | |
Serial.println(F("Received ack")); | |
if (LMIC.dataLen) { | |
Serial.println(F("Received ")); | |
Serial.println(LMIC.dataLen); | |
Serial.println(F(" bytes of payload")); | |
} | |
// Schedule next transmission | |
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send); | |
break; | |
case EV_LOST_TSYNC: | |
Serial.println(F("EV_LOST_TSYNC")); | |
break; | |
case EV_RESET: | |
Serial.println(F("EV_RESET")); | |
break; | |
case EV_RXCOMPLETE: | |
// data received in ping slot | |
Serial.println(F("EV_RXCOMPLETE")); | |
break; | |
case EV_LINK_DEAD: | |
Serial.println(F("EV_LINK_DEAD")); | |
break; | |
case EV_LINK_ALIVE: | |
Serial.println(F("EV_LINK_ALIVE")); | |
break; | |
/* | |
|| This event is defined but not used in the code. No | |
|| point in wasting codespace on it. | |
|| | |
|| case EV_SCAN_FOUND: | |
|| Serial.println(F("EV_SCAN_FOUND")); | |
|| break; | |
*/ | |
case EV_TXSTART: | |
Serial.println(F("EV_TXSTART")); | |
break; | |
default: | |
Serial.print(F("Unknown event: ")); | |
Serial.println((unsigned) ev); | |
break; | |
} | |
} | |
void do_send(osjob_t* j) { | |
// Check if there is not a current TX/RX job running | |
if (LMIC.opmode & OP_TXRXPEND) { | |
Serial.println(F("OP_TXRXPEND, not sending")); | |
} else { | |
// read the temperature from the DHT22 | |
/*float temperature = dht.readTemperature(); | |
Serial.print("Temperature: "); Serial.print(temperature); | |
Serial.println(" *C"); | |
// adjust for the f2sflt16 range (-1 to 1) | |
temperature = temperature / 100; | |
// read the humidity from the DHT22 | |
float rHumidity = dht.readHumidity(); | |
Serial.print("%RH "); | |
Serial.println(rHumidity); | |
// adjust for the f2sflt16 range (-1 to 1) | |
rHumidity = rHumidity / 100; | |
// float -> int | |
// note: this uses the sflt16 datum (https://github.com/mcci-catena/arduino-lmic#sflt16) | |
uint16_t payloadTemp = LMIC_f2sflt16(temperature); | |
// int -> bytes | |
byte tempLow = lowByte(payloadTemp); | |
byte tempHigh = highByte(payloadTemp); | |
// place the bytes into the payload | |
payload[0] = tempLow; | |
payload[1] = tempHigh; | |
// float -> int | |
uint16_t payloadHumid = LMIC_f2sflt16(rHumidity); | |
// int -> bytes | |
byte humidLow = lowByte(payloadHumid); | |
byte humidHigh = highByte(payloadHumid); | |
payload[2] = humidLow; | |
payload[3] = humidHigh;*/ | |
static uint8_t payload[32]; | |
uint8_t idx = 0; | |
uint32_t data; | |
float measuredvbat = analogRead(A7); | |
measuredvbat *= 2; // we divided by 2, so multiply back | |
measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage | |
measuredvbat /= 1024; // convert to voltage | |
if (GPS.newNMEAreceived()) { | |
GPS.parse(GPS.lastNMEA()); | |
} | |
if (GPS.fix) { | |
Serial.println(F("Got a GPS fix")); | |
//data = GPS.latitude_fixed * (GPS.lat == 'N' ? 1 : -1) + 90 * 1E7; | |
data = (int)(GPS.latitudeDegrees * 1E7); | |
payload[idx++] = data >> 24; | |
payload[idx++] = data >> 16; | |
payload[idx++] = data >> 8; | |
payload[idx++] = data; | |
//data = GPS.longitude_fixed * (GPS.lon == 'E' ? 1 : -1) + 180 * 1E7; | |
data = (int)(GPS.longitudeDegrees * 1E7); | |
payload[idx++] = data >> 24; | |
payload[idx++] = data >> 16; | |
payload[idx++] = data >> 8; | |
payload[idx++] = data; | |
data = (int)(GPS.altitude + 0.5); | |
payload[idx++] = data >> 8; | |
payload[idx++] = data; | |
data = (int)(GPS.speed); | |
payload[idx++] = data >> 8; | |
payload[idx++] = data; | |
data = (int)(measuredvbat); | |
payload[idx++] = data >> 8; | |
payload[idx++] = data; | |
} else { | |
Serial.println(F("No GPS fix")); | |
for (idx = 0; idx < 255; idx++) { | |
payload[idx] = 0; | |
} | |
} | |
Serial.println(F("Packet queued")); | |
// prepare upstream data transmission at the next possible time. | |
// transmit on port 1 (the first parameter); you can use any value from 1 to 223 (others are reserved). | |
// don't request an ack (the last parameter, if not zero, requests an ack from the network). | |
// Remember, acks consume a lot of network resources; don't ask for an ack unless you really need it. | |
LMIC_setTxData2(1, payload, idx, 0); | |
} | |
// Next TX is scheduled after TX_COMPLETE event. | |
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send); | |
} | |
// Timer interrupt handler | |
void timer_callback() | |
{ | |
GPS.read(); | |
} | |
void setup() { | |
delay(5000); | |
//while (! Serial); | |
Serial.begin(115200); | |
Serial.println(F("Starting")); | |
// LMIC init | |
os_init(); | |
// Reset the MAC state. Session and pending data transfers will be discarded. | |
LMIC_reset(); | |
// Disable link-check mode and ADR, because ADR tends to complicate testing. | |
LMIC_setAdrMode(0); // turn ADR on | |
LMIC_setLinkCheckMode(0); // enable link check mode on | |
LMIC_setDrTxpow(DR_SF10, 20); | |
LMIC_selectSubBand(1); | |
// 9600 NMEA is the default baud rate for Adafruit MTK GPS's- some use 4800 | |
GPS.begin(9600); | |
// Only interrested in GGA, no antenna status | |
GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA); | |
GPS.sendCommand(PGCMD_NOANTENNA); | |
// Update every second | |
GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); // 1 Hz update rate | |
// Request updates on antenna status, comment out to keep quiet | |
// GPS.sendCommand(PGCMD_ANTENNA); | |
// Configure timer | |
timer.configure(TC_CLOCK_PRESCALER_DIV16, // prescaler | |
TC_COUNTER_SIZE_16BIT, // bit width of timer | |
TC_WAVE_GENERATION_MATCH_PWM // frequency or PWM mode | |
); | |
// Set timer period. | |
// Transmission speed is 9600bps, wich is about 1byte/ms | |
// (The GPS module isn't sending that fast, we can reliably read data with | |
// 5 ms polling!) | |
// With DIV16 prescaler, 1 ms is F_CPU/16000 | |
timer.setPeriodMatch(F_CPU / 16000, 1, 0); | |
timer.setCallback(true, TC_CALLBACK_CC_CHANNEL0, timer_callback); | |
timer.enable(true); | |
delay(2000); | |
// Start job (sending automatically starts OTAA too) | |
do_send(&sendjob); | |
} | |
void loop() { // we call the LMIC's runloop processor. This will cause things to happen based on events and time. One | |
// of the things that will happen is callbacks for transmission complete or received messages. We also | |
// use this loop to queue periodic data transmissions. You can put other things here in the `loop()` routine, | |
// but beware that LoRaWAN timing is pretty tight, so if you do more than a few milliseconds of work, you | |
// will want to call `os_runloop_once()` every so often, to keep the radio running. | |
// read data from the GPS in the 'main loop' | |
os_runloop_once(); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment