Skip to content

Instantly share code, notes, and snippets.

@amitkaps
Created July 30, 2018 03:49
Show Gist options
  • Save amitkaps/d4acf417fffed69f1a49d717a17dbc6d to your computer and use it in GitHub Desktop.
Save amitkaps/d4acf417fffed69f1a49d717a17dbc6d to your computer and use it in GitHub Desktop.
Visualisation helpers for DL Workshop
import numpy as np
import pandas as pd
import altair as alt
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from keras.preprocessing.image import ImageDataGenerator
# Helper to get the labels for each class of Fashion Mnist
def fashion_mnist_label():
labels = {
0: "T-shirt/top", 1:"Trouser", 2:"Pullover", 3:"Dress", 4:"Coat",
5:"Sandal", 6:"Shirt", 7:"Sneaker", 8:"Bag", 9:"Ankle boot"}
return labels
# Show an image from an nparray
def imshow(X, label="", colormap="greys"):
"""
Shows an image output from a numpy input
X : array_like, shape (n, m)
label: A string value for the label of the image (default is blank)
colormap: A color map scheme to apply to the image (default is "grey")
"""
img = pd.DataFrame(X).reset_index().melt("index")
img.columns = ["h" , "w", "value"]
image = alt.Chart(img).mark_rect().encode(
alt.X('w:N', axis=None),
alt.Y('h:N', axis=None),
alt.Color("value", legend=None, sort="descending", scale=alt.Scale(scheme=colormap)),
tooltip = ["value"]
).properties(
width = 350,
height = 350,
title = label
)
return image
# Show first unique value from numpy dataset
def imshow_unique(X, y, labels):
"""
Shows an image output from a numpy input
X : array_like, shape (count x width x height)
y : array_like, shape (count)
labels: A dictionary of labels for y
"""
u, indices = np.unique(y, return_index=True)
plt.figure(figsize = (16,7))
for i in u:
plt.subplot(2,5,i+1)
plt.imshow(X[indices[i]], cmap="gray")
plt.title(labels[y[indices[i]]])
plt.axis('off')
# Create a sprite from the numpy dataset
def imshow_sprite(X):
"""
Returns a sprite image consisting of images passed as argument.
Images should be count x width x height
"""
if isinstance(X, list):
X = np.array(X)
img_h = X.shape[1]
img_w = X.shape[2]
n_plots = int(np.ceil(np.sqrt(X.shape[0])))
spriteimage = np.ones((img_h * n_plots ,img_w * n_plots ))
for i in range(n_plots):
for j in range(n_plots):
this_filter = i * n_plots + j
if this_filter < X.shape[0]:
this_img = X[this_filter]
spriteimage[i * img_h:(i + 1) * img_h,
j * img_w:(j + 1) * img_w] = this_img
plt.figure(figsize = (10,10))
plt.imshow(spriteimage,cmap='gray')
plt.axis('off')
# Plot a 3d
def plot3d(X,Y,Z):
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, color='y')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
# Visualise the metrics from the model
def metrics(history):
df = pd.DataFrame(history)
df.reset_index()
df["batch"] = df.index + 1
df = df.melt("batch", var_name="name")
df["val"] = df.name.str.startswith("val")
df["type"] = df["val"]
df["metrics"] = df["val"]
df.loc[df.val == False, "type"] = "training"
df.loc[df.val == True, "type"] = "validation"
df.loc[df.val == False, "metrics"] = df.name
df.loc[df.val == True, "metrics"] = df.name.str.split("val_", expand=True)[1]
df = df.drop(["name", "val"], axis=1)
base = alt.Chart().encode(
x = "batch:Q",
y = "value:Q",
color = "type"
).properties(width = 300, height = 300)
layers = base.mark_circle(size = 50).encode(tooltip = ["batch", "value"]) + base.mark_line()
chart = layers.facet(column='metrics:N', data=df).resolve_scale(y='independent')
return chart
def predict(proba, actual, labels):
"""
Shows a probability output from an probability run
proba : array of probability for each class
actual: an int for the actual class
labels: a dictionary of labels for each class
"""
df = pd.DataFrame({"proba": proba})
df['labels'] = df.index
df['labels'] = df['labels'].map(labels)
df["actual"] = df.index
df.loc[df.index == actual, "actual"] = True
df.loc[df.index != actual, "actual"] = False
predicted_class = df.proba.idxmax()
chart = alt.Chart(df).mark_bar().encode(
alt.X('proba:Q', scale=alt.Scale(domain=[0,1])),
alt.Y('labels:N'),
alt.Color("actual"),
tooltip = ["proba"]
).properties(
width = 350,
height = 350,
title = "Prediction: " + labels[predicted_class]
)
return chart
def show_images(images, labels):
"""
Shows the set of batch image output from a numpy input
images : A set of images with count * width * height * channel
index: An index for the label for the categorical images
"""
num = len(images)
columns = 5
rows = num//5
i = 0
plt.figure(figsize = (16,7))
for img in images:
plt.subplot(rows,columns,i+1)
plt.imshow(img)
label = "label=" + str(labels[i])
plt.title(label)
plt.axis('off')
i = i + 1
def show_single_image_gen(gen, image, num):
"""
Shows the set of image augmented images for a single image
gen: generator object for image augemtation
image: image to be augmented
num: number of augmented images
"""
image_array = np.expand_dims(image, axis=0)
gen.fit(image_array)
samples = gen.flow(image_array)
images = samples.next()
for i in range(num-1):
img = samples.next()
images = np.r_[images, img]
columns = 5
rows = num//5
i = 0
plt.figure(figsize = (16,7))
for img in images:
plt.subplot(rows,columns,i+1)
plt.imshow(img)
plt.axis('off')
i = i + 1
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment