Created
July 30, 2018 03:49
-
-
Save amitkaps/d4acf417fffed69f1a49d717a17dbc6d to your computer and use it in GitHub Desktop.
Visualisation helpers for DL Workshop
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import altair as alt | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
from keras.preprocessing.image import ImageDataGenerator | |
# Helper to get the labels for each class of Fashion Mnist | |
def fashion_mnist_label(): | |
labels = { | |
0: "T-shirt/top", 1:"Trouser", 2:"Pullover", 3:"Dress", 4:"Coat", | |
5:"Sandal", 6:"Shirt", 7:"Sneaker", 8:"Bag", 9:"Ankle boot"} | |
return labels | |
# Show an image from an nparray | |
def imshow(X, label="", colormap="greys"): | |
""" | |
Shows an image output from a numpy input | |
X : array_like, shape (n, m) | |
label: A string value for the label of the image (default is blank) | |
colormap: A color map scheme to apply to the image (default is "grey") | |
""" | |
img = pd.DataFrame(X).reset_index().melt("index") | |
img.columns = ["h" , "w", "value"] | |
image = alt.Chart(img).mark_rect().encode( | |
alt.X('w:N', axis=None), | |
alt.Y('h:N', axis=None), | |
alt.Color("value", legend=None, sort="descending", scale=alt.Scale(scheme=colormap)), | |
tooltip = ["value"] | |
).properties( | |
width = 350, | |
height = 350, | |
title = label | |
) | |
return image | |
# Show first unique value from numpy dataset | |
def imshow_unique(X, y, labels): | |
""" | |
Shows an image output from a numpy input | |
X : array_like, shape (count x width x height) | |
y : array_like, shape (count) | |
labels: A dictionary of labels for y | |
""" | |
u, indices = np.unique(y, return_index=True) | |
plt.figure(figsize = (16,7)) | |
for i in u: | |
plt.subplot(2,5,i+1) | |
plt.imshow(X[indices[i]], cmap="gray") | |
plt.title(labels[y[indices[i]]]) | |
plt.axis('off') | |
# Create a sprite from the numpy dataset | |
def imshow_sprite(X): | |
""" | |
Returns a sprite image consisting of images passed as argument. | |
Images should be count x width x height | |
""" | |
if isinstance(X, list): | |
X = np.array(X) | |
img_h = X.shape[1] | |
img_w = X.shape[2] | |
n_plots = int(np.ceil(np.sqrt(X.shape[0]))) | |
spriteimage = np.ones((img_h * n_plots ,img_w * n_plots )) | |
for i in range(n_plots): | |
for j in range(n_plots): | |
this_filter = i * n_plots + j | |
if this_filter < X.shape[0]: | |
this_img = X[this_filter] | |
spriteimage[i * img_h:(i + 1) * img_h, | |
j * img_w:(j + 1) * img_w] = this_img | |
plt.figure(figsize = (10,10)) | |
plt.imshow(spriteimage,cmap='gray') | |
plt.axis('off') | |
# Plot a 3d | |
def plot3d(X,Y,Z): | |
fig = plt.figure(figsize=(8,8)) | |
ax = fig.add_subplot(111, projection='3d') | |
ax.plot_surface(X, Y, Z, color='y') | |
ax.set_xlabel('X') | |
ax.set_ylabel('Y') | |
ax.set_zlabel('Z') | |
plt.show() | |
# Visualise the metrics from the model | |
def metrics(history): | |
df = pd.DataFrame(history) | |
df.reset_index() | |
df["batch"] = df.index + 1 | |
df = df.melt("batch", var_name="name") | |
df["val"] = df.name.str.startswith("val") | |
df["type"] = df["val"] | |
df["metrics"] = df["val"] | |
df.loc[df.val == False, "type"] = "training" | |
df.loc[df.val == True, "type"] = "validation" | |
df.loc[df.val == False, "metrics"] = df.name | |
df.loc[df.val == True, "metrics"] = df.name.str.split("val_", expand=True)[1] | |
df = df.drop(["name", "val"], axis=1) | |
base = alt.Chart().encode( | |
x = "batch:Q", | |
y = "value:Q", | |
color = "type" | |
).properties(width = 300, height = 300) | |
layers = base.mark_circle(size = 50).encode(tooltip = ["batch", "value"]) + base.mark_line() | |
chart = layers.facet(column='metrics:N', data=df).resolve_scale(y='independent') | |
return chart | |
def predict(proba, actual, labels): | |
""" | |
Shows a probability output from an probability run | |
proba : array of probability for each class | |
actual: an int for the actual class | |
labels: a dictionary of labels for each class | |
""" | |
df = pd.DataFrame({"proba": proba}) | |
df['labels'] = df.index | |
df['labels'] = df['labels'].map(labels) | |
df["actual"] = df.index | |
df.loc[df.index == actual, "actual"] = True | |
df.loc[df.index != actual, "actual"] = False | |
predicted_class = df.proba.idxmax() | |
chart = alt.Chart(df).mark_bar().encode( | |
alt.X('proba:Q', scale=alt.Scale(domain=[0,1])), | |
alt.Y('labels:N'), | |
alt.Color("actual"), | |
tooltip = ["proba"] | |
).properties( | |
width = 350, | |
height = 350, | |
title = "Prediction: " + labels[predicted_class] | |
) | |
return chart | |
def show_images(images, labels): | |
""" | |
Shows the set of batch image output from a numpy input | |
images : A set of images with count * width * height * channel | |
index: An index for the label for the categorical images | |
""" | |
num = len(images) | |
columns = 5 | |
rows = num//5 | |
i = 0 | |
plt.figure(figsize = (16,7)) | |
for img in images: | |
plt.subplot(rows,columns,i+1) | |
plt.imshow(img) | |
label = "label=" + str(labels[i]) | |
plt.title(label) | |
plt.axis('off') | |
i = i + 1 | |
def show_single_image_gen(gen, image, num): | |
""" | |
Shows the set of image augmented images for a single image | |
gen: generator object for image augemtation | |
image: image to be augmented | |
num: number of augmented images | |
""" | |
image_array = np.expand_dims(image, axis=0) | |
gen.fit(image_array) | |
samples = gen.flow(image_array) | |
images = samples.next() | |
for i in range(num-1): | |
img = samples.next() | |
images = np.r_[images, img] | |
columns = 5 | |
rows = num//5 | |
i = 0 | |
plt.figure(figsize = (16,7)) | |
for img in images: | |
plt.subplot(rows,columns,i+1) | |
plt.imshow(img) | |
plt.axis('off') | |
i = i + 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment