Skip to content

Instantly share code, notes, and snippets.

@amitshekhariitbhu
Last active November 13, 2017 08:23
Show Gist options
  • Save amitshekhariitbhu/4d69e373296680adbb2dd95fce0665f1 to your computer and use it in GitHub Desktop.
Save amitshekhariitbhu/4d69e373296680adbb2dd95fce0665f1 to your computer and use it in GitHub Desktop.
from __future__ import print_function
import shutil
import os.path
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
EXPORT_DIR = './model'
if os.path.exists(EXPORT_DIR):
shutil.rmtree(EXPORT_DIR)
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Parameters
learning_rate = 0.001
training_iters = 200000
batch_size = 128
display_step = 10
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
# Create Model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7 * 7 * 64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print("Iter " + str(step * batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
# Calculate accuracy for 256 mnist test images
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
y: mnist.test.labels[:256],
keep_prob: 1.}))
WC1 = weights['wc1'].eval(sess)
BC1 = biases['bc1'].eval(sess)
WC2 = weights['wc2'].eval(sess)
BC2 = biases['bc2'].eval(sess)
WD1 = weights['wd1'].eval(sess)
BD1 = biases['bd1'].eval(sess)
W_OUT = weights['out'].eval(sess)
B_OUT = biases['out'].eval(sess)
# Create new graph for exporting
g = tf.Graph()
with g.as_default():
x_2 = tf.placeholder("float", shape=[None, 784], name="input")
WC1 = tf.constant(WC1, name="WC1")
BC1 = tf.constant(BC1, name="BC1")
x_image = tf.reshape(x_2, [-1, 28, 28, 1])
CONV1 = conv2d(x_image, WC1, BC1)
MAXPOOL1 = maxpool2d(CONV1, k=2)
WC2 = tf.constant(WC2, name="WC2")
BC2 = tf.constant(BC2, name="BC2")
CONV2 = conv2d(MAXPOOL1, WC2, BC2)
MAXPOOL2 = maxpool2d(CONV2, k=2)
WD1 = tf.constant(WD1, name="WD1")
BD1 = tf.constant(BD1, name="BD1")
FC1 = tf.reshape(MAXPOOL2, [-1, WD1.get_shape().as_list()[0]])
FC1 = tf.add(tf.matmul(FC1, WD1), BD1)
FC1 = tf.nn.relu(FC1)
W_OUT = tf.constant(W_OUT, name="W_OUT")
B_OUT = tf.constant(B_OUT, name="B_OUT")
# skipped dropout for exported graph as there
# is no need for already calculated weights
OUTPUT = tf.nn.softmax(tf.matmul(FC1, W_OUT) + B_OUT, name="output")
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
graph_def = g.as_graph_def()
tf.train.write_graph(graph_def, EXPORT_DIR, 'mnist_model_graph.pb', as_text=False)
# Test trained model
y_train = tf.placeholder("float", [None, 10])
correct_prediction = tf.equal(tf.argmax(OUTPUT, 1), tf.argmax(y_train, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("check accuracy %g" % accuracy.eval(
{x_2: mnist.test.images, y_train: mnist.test.labels}, sess))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment