Created
          April 16, 2015 08:20 
        
      - 
      
 - 
        
Save amkatrutsa/d4931f9b6b8cd5e2c0ae to your computer and use it in GitHub Desktop.  
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | k = 256 #number of clusters | |
| c = 4 #number of subspaces | |
| R = np.eye(m, m) | |
| opq_codes = np.zeros((n, c)) | |
| opq_centroids = np.zeros((k, m/c, c)) | |
| iterations = 30 | |
| for it in xrange(iterations): | |
| print "Num iter", it | |
| mod_X = np.dot(X, R) | |
| opq_Y = np.zeros((n, m)) | |
| for i in xrange(c): | |
| centroid, label = vq.kmeans2(mod_X[:, dim[i]:dim[i+1]], k, iter=1) | |
| opq_codes[:, i] = label | |
| opq_centroids[:, :, i] = centroid | |
| opq_Y[:, dim[i]:dim[i+1]] = centroid[label, :] | |
| mat_to_svd = np.dot(X.T, opq_Y) | |
| U, S, V = scipy.linalg.svd(mat_to_svd) | |
| R = np.dot(U, V) | |
| def opq_retrieval(query): | |
| q = X[query,:].reshape((1, X.shape[1])).dot(R) | |
| distance = np.zeros((k, c)) | |
| dist = np.zeros((n, )) | |
| for i in xrange(c): | |
| part_q = q[:, dim[i]:dim[i+1]] | |
| distance[:, i] = cdist(part_q, opq_centroids[:, :, i]) | |
| for j in xrange(n): | |
| dist[j] = np.sum(distance[opq_codes[j, :].astype(int), :]) | |
| indices = np.argsort(dist) | |
| return indices | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment