Created
November 6, 2018 21:01
-
-
Save amoodie/c7fc62058e617e0449a1a920c7d6ea05 to your computer and use it in GitHub Desktop.
Demonstration of two-parameter Rouse regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% load some example data | |
sampleDepth = [0.9500; 0.9500; 0.9500; 0.8500; 0.8500; 0.8500; 0.7500; 0.7500; 0.7500; 0.5000; 0.5000; 0.5000; 0.1000; 0.1000; 0.1000]; | |
sampleZ = [0.0850; 0.0850; 0.0850; 0.2550; 0.2550; 0.2550; 0.4250; 0.4250; 0.4250; 0.8500; 0.8500; 0.8500; 1.5300; 1.5300; 1.5300]; | |
conc = [1.5897; 1.8884; 2.3833; 1.0620; 0.8321; 0.8760; 0.4087; 0.5752; 0.4819; 0.4908; 0.6069; 0.5313; 0.2321; 0.2569; 0.2492]; | |
% organize into a model structure | |
modelParams.flowDepth = 1.7; | |
modelParams.b = 0.0850; | |
modelParams.Hbb = (modelParams.flowDepth - modelParams.b) / modelParams.b; % this is ((H-b)/b), a constant | |
% datatable for regression | |
samplesTable = array2table([sampleDepth, sampleZ, conc], 'VariableNames', {'sampleDepth', 'sampleZ', 'conc'}); | |
% regression formula has four vars (conc, cb, sampleZ, and Rou. others are hardcoded into formula) | |
modelParams.formula = ['conc ~ cb * ( ((', num2str(modelParams.flowDepth), '-sampleZ)/sampleZ) / ', num2str(modelParams.Hbb), ' )^Rou']; | |
% samplesTable supplies the conc and sampleZ, so guess is needed for other params | |
modelParams.guess = [nanmean(samplesTable.conc(samplesTable.sampleDepth > 0.9)) 0.5]; % guesses for cb and Rou | |
modelParams.model = fitnlm(samplesTable, modelParams.formula, modelParams.guess); | |
% pull regressed variables outs | |
modelParams.Rou = modelParams.model.Coefficients.Estimate(1); | |
modelParams.cb = modelParams.model.Coefficients.Estimate(2); | |
% sanity check | |
if modelParams.Rou > 1; error('Rouse > 1, error'); end % is this fair? | |
% evaluate the regression | |
nEvalPts = 50; | |
modelEvalZs = linspace(modelParams.flowDepth*0.05, modelParams.flowDepth, nEvalPts)'; | |
modelEvalCs = modelParams.cb .* ( ((modelParams.flowDepth-modelEvalZs)./modelEvalZs) ./ modelParams.Hbb ) .^ modelParams.Rou; | |
% plot it | |
figure(); hold on; | |
plot(samplesTable.conc, samplesTable.sampleZ, 'ko') | |
plot(modelEvalCs, modelEvalZs, 'r-') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment