得先看透這題是在考 MST……
將人當成節點,關係當成邊,我們能節省的最大成本就是這個圖裡的 MST(實際上,是最大生成森林)
總共所須付的錢就是 10000 * (N + M) - reduce
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <functional>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
typedef long long ll;
struct Edge {
int u, v, cost;
bool operator > (const Edge& e) const {
return cost > e.cost;
}
};
int N, M, R;
int V, E;
Edge edges[50000];
int parent[10000 * 2];
int height[10000 * 2];
void init() {
for (int i = 0; i < V; i++) {
parent[i] = i;
height[i] = 0;
}
}
int find(int a) {
if (parent[a] == a)
return a;
return parent[a] = find(parent[a]);
}
void unite(int a, int b) {
a = find(a);
b = find(b);
if (a == b) return;
if (height[a] < height[b])
parent[a] = b;
else {
parent[b] = a;
if (height[a] == height[b])
height[a]++;
}
}
bool same(int a, int b) {
return find(a) == find(b);
}
ll solve() {
// kruskal
sort(edges, edges + E, greater<Edge>());
init();
ll cnt = 0;
for (int i = 0; i < E; i++) {
Edge& e = edges[i];
if (!same(e.u, e.v)) {
unite(e.u, e.v);
cnt += e.cost;
}
}
return cnt;
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
scanf("%d %d %d", &N, &M, &R);
for (int i = 0; i < R; i++) {
int a, b, w;
scanf("%d %d %d", &a, &b, &w);
edges[i] = Edge{a, N + b, w};
}
V = N + M;
E = R;
ll reduce = solve();
printf("%lld\n", 10000 * (N + M) - reduce);
}
return 0;
}