Created
January 15, 2013 19:10
-
-
Save amueller/4541127 to your computer and use it in GitHub Desktop.
Linear SVM on Aurelien's MSRC features
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from glob import glob | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.svm import LinearSVC | |
from sklearn.metrics import accuracy_score, confusion_matrix | |
classes = np.array(['building', 'grass', 'tree', 'cow', 'sheep', 'sky', | |
'aeroplane', 'water', 'face', 'car', 'bicycle', 'flower', | |
'sign', 'bird', 'book', 'chair', 'road', 'cat', 'dog', | |
'body', 'boat', 'void', 'mountain', 'horse']) | |
def load_data(dataset="train"): | |
# get the indices of mountain horse and void to remove later | |
mountain_idx = np.where(classes == "mountain")[0] | |
horse_idx = np.where(classes == "horse")[0] | |
void_idx = np.where(classes == "void")[0] | |
# find out which dataset we should be loading | |
ds_dict = dict(train="Train", val="Validation", test="Test") | |
if dataset not in ds_dict.keys(): | |
raise ValueError("dataset must be one of 'train', 'val', 'test'," | |
" got %s" % dataset) | |
ds_path = ds_dict[dataset] | |
features = [] | |
labels = [] | |
for f in glob(ds_path + "/*.dat"): | |
# for each file, get labels and features | |
name = os.path.basename(f).split('.')[0] | |
labels.append(np.loadtxt("labels/%s.txt" % name, dtype=np.int)) | |
feat = [np.loadtxt("%s/%s.local%s" % (ds_path, name, i)) | |
for i in xrange(1, 7)] | |
features.append(np.hstack(feat)) | |
features = np.vstack(features) | |
labels = np.hstack(labels) | |
# remove mountain, horse and void | |
features = features[(labels != mountain_idx) * (labels != void_idx) | |
* (labels != horse_idx)] | |
labels = labels[(labels != mountain_idx) * (labels != void_idx) | |
* (labels != horse_idx)] | |
return features, labels | |
def main(): | |
X_train, y_train = load_data() | |
X_val, y_val = load_data("val") | |
# put train and val together | |
X = np.vstack([X_train, X_val]) | |
y = np.hstack([y_train, y_val]) | |
X_test, y_test = load_data("test") | |
# fit a linear SVM | |
clf = LinearSVC(C=0.0001) | |
clf.fit(X, y) | |
# predict | |
y_pred = clf.predict(X_test) | |
# evaluate using accuracy and mean accuracy | |
# (via diagonal of confusion matrix) | |
print(accuracy_score(y_test, y_pred)) | |
confusion = confusion_matrix(y_test, y_pred) | |
plt.matshow(confusion) | |
confusion_normalized = (confusion.astype(np.float) / | |
confusion.sum(axis=1)[:, np.newaxis]) | |
print(np.mean(np.diag(confusion_normalized))) | |
plt.matshow(confusion_normalized) | |
plt.show() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment