Skip to content

Instantly share code, notes, and snippets.

@amuramatsu
Last active June 26, 2021 18:24
Show Gist options
  • Save amuramatsu/263ff92d4bc8380742f3560af7cf8d18 to your computer and use it in GitHub Desktop.
Save amuramatsu/263ff92d4bc8380742f3560af7cf8d18 to your computer and use it in GitHub Desktop.
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2015, 2016, 2017 MURAMATSU Atsushi <[email protected]>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import sys
import os
import io
import math
import locale
import struct
import gzip
import subprocess
from datetime import datetime
from abc import ABCMeta, abstractmethod
import numpy as np
try:
from typing import (Text, Tuple, List, Dict,
IO, Callable, Iterable, Optional, Union, Any)
except ImportError:
Text = Any = None # type: ignore
class _DummyCls(object):
def __getitem__(self, *args): pass # type: ignore
Tuple = List = Dict = IO = _DummyCls # type: ignore
Callable = Iterable = Optional = Union = _DummyCls # type: ignore
INDEX_TYPES = ('time', 'frequency')
if sys.version_info[0] >= 3:
def _to_string_lat1(by): # type: (bytes) -> Text
return by.decode('latin-1')
def _to_string_utf16le(by): # type: (bytes) -> Text
return by.decode('utf-16le')
def _readline_lat1(fd): # type: (IO[bytes]) -> Text
return _to_string_lat1(fd.readline())
def _readline_utf16le(fd): # type: (IO[bytes]) -> Text
by = fd.readline()
if len(by) % 2 == 1 and by[-1] == ord("\n"):
by += fd.read(1)
return _to_string_utf16le(by)
def _check_utf16le(by): # type: (bytes) -> bool
if 0 in by:
return True
return False
_basestring = str
else:
def _to_string_lat1(by): # type: (bytes) -> Text
return by
def _to_string_utf16le(by): # type: (bytes) -> Text
return unicode(by, coding='utf-16le') # type: ignore
def _readline_lat1(fd): # type: (IO[bytes]) -> Text
return _to_string_lat1(fd.readline())
def _readline_utf16le(fd): # type: (IO[bytes]) -> Text
by = fd.readline()
if len(by) % 2 == 1 and by[-1] == "\n":
by += fd.read(1)
return _to_string_utf16le(by)
def _check_utf16le(by): # type: (bytes) -> bool
if "\0" in by:
return True
return False
_basestring = basestring
LTSPICE_FILES = [
("LTspiceXVII", "XVIIx64.exe", 17),
("LTspiceXVII", "XVIIx86.exe", 17),
("LTspiceIV", "scad3.exe", 4),
]
LTSPICE = None
def get_ltspice_program(forced_version=None):
# type: (int) -> Optional[List[Text]]
"""Get LTspice command.
Args:
forced_version (int, optional): select LTspice version.
Now supported versions are 4 and 17.
Default is latest version which is founded.
Returns:
None, list[str].
If LTspice is not found, this function returns None.
"""
if sys.platform in ('win32', 'win64'):
progdirs = []
progdir = os.getenv("PROGRAMFILES")
if progdir is not None:
progdirs.append(progdir)
progdir_x86 = os.getenv("ProgramFiles(x86)")
if progdir_x86 is not None:
progdirs.append(progdir_x86)
for progdir in progdirs:
for d, f, v in LTSPICE_FILES:
if (forced_version is not None and v != forced_version):
continue
exefile = os.path.join(progdir, "LTC", d, f)
if os.path.exists(exefile):
return [ exefile ]
elif sys.platform == 'darwin':
exefile = "/Applications/LTspice.app/Contents/MacOS/LTspice"
if os.path.exists(exefile):
return [ exefile ]
else: # UN*X with wine
for progdir in (
os.path.expanduser("~/.wine/drive_c/Program Files"),
os.path.expanduser("~/.wine/drive_c/Program Files (x86)")):
if not os.path.exists(progdir):
continue
for d, f, v in LTSPICE_FILES:
if (forced_version is not None and v != forced_version):
continue
exefile = os.path.join(progdir, "LTC", d, f)
if os.path.exists(exefile):
return [ "wine", exefile ]
return None
if LTSPICE is None:
LTSPICE = get_ltspice_program()
def _parse_date(s): # type: (Text) -> datetime
old_locale = locale.getlocale(locale.LC_TIME)
try:
locale.setlocale(locale.LC_TIME, "C")
return datetime.strptime(s, "%a %b %d %H:%M:%S %Y")
finally:
locale.setlocale(locale.LC_TIME, old_locale)
def _parse_any(s): # type: (Text) -> Union[int,float,Text]
try:
return int(s)
except ValueError:
try:
return float(s)
except ValueError:
return s
def read_ltspice_log(logfile): # type: (Text) -> Optional[Dict[Text,Any]]
"""Read information of LTspice simulation from logfile
Args:
logfile (str): filename of logfile.
Gzipped logfile is also supported.
Returns:
dict: informations
Now supported informations are:
:steps: tuple of (variable, step value)
:date: Simulated date
:total elasp time: Total elasp time of simulation
"""
if not os.path.exists(logfile):
return None
encoding = 'latin-1'
if logfile.endswith(".gz"):
_open = gzip.open # type: Callable[..., IO]
else:
_open = io.open
with _open(logfile, 'rb') as f:
line = f.readline()
if _check_utf16le(line):
encoding = 'utf-16le'
result = {} # type: Dict[Text,Any]
step_data = []
with _open(logfile, 'r', encoding=encoding) as f:
for line in f:
if line.startswith(".step "):
k, v = line[6:].split('=', 1)
step_data.append((k.strip().lower(), float(v)))
elif ':' in line:
k, v = [ s.strip() for s in line.split(':', 1) ]
k = k.lower()
if k == 'date':
v = _parse_date(v.strip())
elif k == 'total elapsed time':
v = float(v.strip().split()[0])
result[k] = v
elif '=' in line:
k, v = [ s.strip() for s in line.split('=', 1) ]
result[k.lower()] = _parse_any(v)
if len(step_data):
result['steps'] = tuple(step_data)
return result
class _DataReaderBase(object):
__metaclass__ = ABCMeta
@abstractmethod
def get_bulk_lengths(self):
# type: () -> Iterable[int]
pass
@abstractmethod
def get_bulk(self, start, end, stride):
# type: (int, int, int) -> Optional[np.ndarray]
pass
class _RawDataReader(_DataReaderBase):
def __init__(self, f, col, row, index, var_using,
is_binary, is_complex, is_stepped, readline):
# type: (IO[bytes], int, int, int, List[int], bool, bool, bool, Callable[[IO[bytes]],Text]) -> None
self.f = f
self.col = col
self.row = row
self.index = index
self.var_using = np.array(var_using)
self.readline = readline
self.is_binary = is_binary
self.is_complex = is_complex
if is_binary:
self.skip_row = self._skip_row_binary
if is_complex:
self.get_row = self._get_row_binary_cpx
self.fmt = "<%dd" % (2 * self.col)
else:
self.get_row = self._get_row_binary_real
fmt = ["<"]
for c in range(self.col):
if c == index:
fmt.append("d")
else:
fmt.append("f")
self.fmt = "".join(fmt)
self.rowsize = struct.calcsize(self.fmt)
else:
self.get_row = self._get_row_text
self.skip_row = self._skip_row_text
if is_stepped:
self.data_bulk = self._check_bulk_info()
else:
self.data_bulk = [(self.row, 0)]
self.next_bulk = 0
def _get_row_binary_cpx(self, check_n=None): # type: (int) -> np.ndarray
v = struct.unpack(self.fmt, self.f.read(self.rowsize))
return np.array([ complex(v[2*i], v[2*i+1]) for i in range(self.col) ])
def _get_row_binary_real(self, check_n=None): # type: (int) -> np.ndarray
return np.array(struct.unpack(self.fmt, self.f.read(self.rowsize)))
def _get_row_text(self, check_n=None): # type: (int) -> np.ndarray
def _complex(st): # type: (Text) -> complex
return complex(*[ float(s) for s in st.split(',') ])
if self.is_complex:
_parser = _complex # type: Callable[[Text], Union[float,complex]]
else:
_parser = float
result = []
v, st = self.readline(self.f).strip().split()
try:
n = int(v)
except ValueError:
raise Exception("broken format")
if check_n is not None and n != check_n:
raise Exception("broken format")
result.append(_parser(st))
for i in range(1, self.col):
st = self.readline(self.f).strip()
result.append(_parser(st))
return np.array(result)
def _skip_row_binary(self, num=1, check_n=None): # type: (int, int) -> None
if num == 0: return
self.f.seek(num * self.rowsize, 1)
def _skip_row_text(self, num=1, check_n=None): # type: (int, int) -> None
for i in range(num):
v, st = self.readline(self.f).strip().split()
try:
n = int(v)
except ValueError:
raise Exception("broken format")
if check_n is not None:
if n != check_n:
raise Exception("broken format")
check_n += 1
for j in range(1, self.col):
st = self.readline(self.f)
def _check_bulk_info(self): # type: () -> List[Tuple[int, int]]
data_bulk = [] # type: List[Tuple[int,int]]
data_pos = self.f.tell()
first_data = self.get_row()[self.index]
data_num = 1
for i in range(1, self.row):
v = self.get_row()[self.index]
if v == first_data:
if data_num == 1:
if len(data_bulk) > 0:
data_bulk[-1] = (data_bulk[-1][0], data_bulk[-1][1]+1)
else:
data_bulk.append((data_num, 0))
data_num = 0
data_num += 1
if data_num != 1:
data_bulk.append((data_num, 0))
self.f.seek(data_pos)
return data_bulk
def get_bulk_lengths(self): # type: () -> Iterable[int]
return (length for length, skip in self.data_bulk)
def get_bulk(self, start, end, stride):
# type: (int, int, int) -> Optional[np.ndarray]
if end <= start:
self.skip_row(sum(self.data_bulk[self.next_bulk]), check_n=0)
self.next_bulk += 1
return None
length = int(math.ceil((end - start + 0.0) / stride))
if self.is_complex:
M = np.empty((length, len(self.var_using)), dtype='complex128')
else:
M = np.empty((length, len(self.var_using)), dtype='float64')
data_no = 0
# skip start
if start > 0:
self.skip_row(start, check_n=data_no)
data_no += start
if stride == 1: # special but ordinary case
for i in range(length):
data = self.get_row(check_n=(data_no + i))
M[i,:] = data[self.var_using]
data_no += length
else:
for i in range(length):
data = self.get_row(check_n=data_no)
data_no += 1
M[i,:] = data[self.var_using]
if i != length-1:
self.skip_row(stride - 1, check_n=data_no)
data_no += stride - 1
# skip end
row_num = sum(self.data_bulk[self.next_bulk])
if data_no < row_num:
self.skip_row(row_num - data_no, check_n=data_no)
self.next_bulk += 1
return M # type: ignore
class _FastDataReader(_DataReaderBase):
def __init__(self, f, col, row, index, var_using, is_stepped):
# type: (IO[bytes], int, int, int, List[int], bool) -> None
self.f = f
self.data_pos = f.tell()
self.col = col
self.row = row
self.index = index
self.var_using = var_using
if is_stepped:
self.data_bulk = self._check_bulk_info()
else:
self.data_bulk = [(self.row, 0)]
self.next_bulk = 0
def _check_bulk_info(self): # type: () -> List[Tuple[int,int]]
self.f.seek(self.data_pos + 4 * self.row * self.index)
index = np.array(struct.unpack(
"<%dd" % self.row, self.f.read(8 * self.row)), dtype=float)
self.f.seek(self.data_pos)
data_bulk = [] # type: List[Tuple[int,int]]
first_data = index[0]
data_num = 1
for v in index[1:]:
if v == first_data:
if data_num == 1:
data_bulk[-1] = (data_bulk[-1][0], data_bulk[-1][1]+1)
else:
data_bulk.append((data_num, 0))
data_num = 0
data_num += 1
if data_num != 1:
data_bulk.append((data_num, 0))
return data_bulk
def get_bulk_lengths(self): # type: () -> Iterable[int]
return (length for length, skip in self.data_bulk)
def get_bulk(self, start, end, stride):
# type: (int, int, int) -> Optional[np.ndarray]
if end <= start:
self.next_bulk += 1
return None
self.f.seek(self.data_pos)
bulk_offset = 0
for i in range(self.next_bulk):
bulk_offset += sum(self.data_bulk[i])
start += bulk_offset
end += bulk_offset
length = int(math.ceil((end - start + 0.0) / stride))
M = np.empty((length, len(self.var_using)), dtype='float64')
data_mask = np.zeros(self.row, dtype=bool)
data_mask[np.array(range(start, end, stride))] = True
for var_index in range(self.col):
if var_index == self.index:
fmt = "d"
size = 8
else:
fmt = "f"
size = 4
buf = self.f.read(size * self.row)
if var_index in self.var_using:
var_pos = self.var_using.index(var_index)
M[:,var_pos] = np.array(
struct.unpack("<%d%s" % (self.row, fmt), buf),
dtype=float)[data_mask]
self.next_bulk += 1
return M # type: ignore
def read_ltspice_raw(filename, vars=None, header_only=False,
start=0, end=None, length=None, stride=1):
# type: (Text, List[Text], bool, Union[int,float], Union[int,float], int, int) -> Dict[Text,Any]
"""Read simulation data of LTspice.
Args:
filename (str): filename of simulation data.
Transient, AC, Operation result and fastacccess converted
Transient data are supported.
Gzipped datafile is also supported.
vars (list[str], optional): read variables.
If ``vars`` is None, all variables are read.
headers_only (bool, optional): header only read mode.
start (int or float, optional): start of data
end (int or float, optional): end of data
length (int, optional): read lenght of data
stride (int, optional): reading stride of data
Returns:
dict: data
Now supported data are:
:variables: tuple(variables name, vairable type)
:no. variables: num of variables
:no. points: num of data points
:offset: data start offset
:date: simulation date
:backannotation:
:flags:
:steps: step information (if stepped flag is exist)
:values: numpy.ndarray (if stepped flag is not exist)
tuple of numpy.ndarray (if stepped flag is exist)
"""
is_firstline = True
is_binary = None
is_complex = False
is_forward = False
is_stepped = False
is_fastaccess = False
is_utf16le = False
col = None
row = None
index_col = None
var_list = [] # type: List[Tuple[Text,Text]]
var_using = [] # type: List[int]
result = {} # type: Dict[Text,Any]
_to_string = None
_readline = None
if end is not None and length is not None:
raise ValueError("cannot set 'end' and 'length' paramters at same time")
stride = int(stride)
if stride < 1:
raise ValueError("'stride' parameter must be 1 or above")
if filename.endswith(".gz"):
_open = gzip.open # type: Callable[...,IO]
basename = filename[:-3]
logfile = os.path.splitext(basename)[0] + ".log.gz"
if not os.path.exists(logfile):
logfile = os.path.splitext(basename)[0] + ".log"
else:
_open = open
logfile = os.path.splitext(filename)[0] + ".log"
logdata = read_ltspice_log(logfile)
with _open(filename, 'rb') as f:
# check encoding is UTF-16LE or not
xline = f.readline()
is_utf16le = _check_utf16le(xline)
if is_utf16le:
xline += f.read(1) # add upper byte of "\n"
_to_string = _to_string_utf16le
_readline = _readline_utf16le
else:
_to_string = _to_string_lat1
_readline = _readline_lat1
line = _to_string(xline)
# Read text part
while line != u"":
s = line.split(':', 1)
if len(s) == 1:
var, value = s[0], u""
else:
var, value = s
var = var.lower()
if var == "binary":
is_binary = True
break
elif var == "values":
is_binary = False
break
elif var == "variables":
if col is None:
raise Exception("invalid data")
for i in range(col):
s = _readline(f)
if s == "":
break
ss = s.split()
if vars is None or ss[1] in vars or ss[2] in INDEX_TYPES:
if ss[2] in INDEX_TYPES:
index_col = i
var_list.append(tuple(ss[1:]))
var_using.append(i)
elif var == "no. variables":
col = int(value.strip())
result[var] = col
elif var == "no. points":
row = int(value.strip())
result[var] = row
elif var == "offset":
result[var] = float(value.strip())
elif var == "date":
result[var] = _parse_date(value.strip())
elif var == "backannotation":
if var not in result:
result[var] = []
result[var].extend(value.strip().split())
elif var == "flags":
result[var] = tuple(value.strip().split())
if 'complex' in result[var]:
is_complex = True
if 'forward' in result[var]:
is_forward = True
if 'stepped' in result[var]:
is_stepped = True
if 'fastaccess' in result[var]:
is_fastaccess = True
else:
result[var] = _parse_any(value.strip())
line = _readline(f)
if logdata is not None:
result["logdata"] = logdata
result["variables"] = tuple(var_list)
if header_only:
result["values"] = None
if is_stepped and logdata is not None and 'steps' in logdata:
result["steps"] = logdata['steps']
return result
if col is None or row is None or index_col is None or is_binary is None:
raise Exception("invalid data")
if is_fastaccess:
if not is_binary or is_complex:
raise Exception(
"invalid format, fastaccess is only for real binary")
reader = _FastDataReader(
f, col, row, index_col, var_using, is_stepped) # type: _DataReaderBase
else:
reader = _RawDataReader(
f, col, row, index_col, var_using,
is_binary, is_complex, is_stepped, _readline)
values = []
for data_len in reader.get_bulk_lengths():
xstart = (int(data_len * start)
if isinstance(start, float) else start)
if xstart < 0:
xstart = max(data_len + xstart, 0)
max_length = (data_len - xstart) // stride
if length is not None:
xlength = (int(data_len * length)
if isinstance(length, float) else length)
xlength = min(xlength, max_length)
xend = xstart + (xlength - 1)*stride + 1
elif end is None:
xlength = max_length
xend = data_len
else:
xend = int(data_len * end) if isinstance(end, float) else end
if xend < 0:
xend = data_len + xend
xend = max(xend, xstart)
xlength = (xend - xstart) // stride
values.append(reader.get_bulk(xstart, xend, stride))
if is_stepped:
result["values"] = tuple(values)
if (logdata is not None and 'steps' in logdata and
len(logdata['steps']) == len(values)):
result["steps"] = logdata['steps']
else:
result["steps"] = tuple([ ("", i) for i in range(len(values)) ])
else:
result["values"] = values[0]
return result
def make_dataframe(data):
import pandas as pd
columns = [name for name, type_ in data['variables']]
if "steps" in data:
dfs = []
for i, step in enumerate(data["steps"]):
step_name = "STEP:{}=".format(step[0])
step_val = step[1]
d = data['values'][i]
if d is not None:
df = pd.DataFrame(d, columns=columns)
df[step_name] = step_val
dfs.append(df)
df = pd.concat(dfs)
else:
df = pd.DataFrame(data['values'], columns=columns)
return df
def find_variable(data, key):
# type: (Dict, Union[Text,Tuple[Text,Text]]) -> Union[None,int,List[int]]
"""Find variable index.
Args:
data (dict): data of LTspice output
key (str or tuple[str,str]): finding variable
Returns:
None, int or list[int]: index of variable
If variable is not found, this function returns None
"""
if isinstance(key, _basestring):
result = [ i for i, item in enumerate(data['variables'])
if item[0] == key ]
else:
result = [ i for i, item in enumerate(data['variables'])
if item == key ]
if len(result) == 0:
return None
elif len(result) == 1:
return result[0]
return result
def run(filename, remove_generated_netlist=True):
# type: (Text, bool) -> None
"""Run LTspice simulation.
Args:
filename (str): filename of ``.asc`` or ``.net``
remove_generated_netlist (bool, optional):
Remove generated netlist by this function.
Default is True. When argument filename is ``.net`` file,
this argument is ignored.
Returns:
None
"""
filename = os.path.abspath(filename)
dirname = os.path.split(filename)[0]
convert_netlist = False
orig_cwd = os.getcwd()
if LTSPICE is None:
raise Exception("LTspice is not found")
else:
ltspice = LTSPICE
try:
os.chdir(dirname)
if filename.endswith(".asc"):
convert_netlist = True
netname = os.path.splitext(filename)[0] + ".net"
if os.path.exists(netname):
os.remove(netname)
subprocess.call(ltspice + ['-netlist', filename ])
if not os.path.exists(netname):
raise Exception("Netfile creating error")
else:
netname = filename
subprocess.call(ltspice + [ '-b', netname ])
finally:
try:
if convert_netlist and remove_generated_netlist:
os.remove(netname)
except:
pass
os.chdir(orig_cwd)
if __name__ == '__main__':
import sys
if sys.argv[1].endswith(".raw"):
data = read_ltspice_raw(sys.argv[1])
if sys.version_info[0] >= 3:
print(str(data).encode('latin1'))
else:
print(str(data))
print(data["values"])
else:
run(sys.argv[1])
@amuramatsu
Copy link
Author

read data from LTSpice's raw file

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment