Skip to content

Instantly share code, notes, and snippets.

View analyticsindiamagazine's full-sized avatar
:octocat:

Analytics India Magazine analyticsindiamagazine

:octocat:
View GitHub Profile
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
FROM tensorflow/tensorflow:1.12.0-py3
ENV LANG=C.UTF-8
RUN mkdir /gpt-2
WORKDIR /gpt-2
ADD . /gpt-2
RUN pip3 install -r requirements.txt
def create_model(is_predicting, input_ids, input_mask, segment_ids, labels,
num_labels):
bert_module = hub.Module(
BERT_MODEL_HUB,
trainable=True)
bert_inputs = dict(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids)
# This is a path to an uncased (all lowercase) version of BERT
BERT_MODEL_HUB = "https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1"
def create_tokenizer_from_hub_module():
"""Get the vocab file and casing info from the Hub module."""
with tf.Graph().as_default():
bert_module = hub.Module(BERT_MODEL_HUB)
tokenization_info = bert_module(signature="tokenization_info", as_dict=True)
with tf.Session() as sess:
vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"],
train_InputExamples = train.apply(lambda x: bert.run_classifier.InputExample(guid=None,
text_a = x[DATA_COLUMN],
text_b = None,
label = x[LABEL_COLUMN]), axis = 1)
val_InputExamples = val.apply(lambda x: bert.run_classifier.InputExample(guid=None,
text_a = x[DATA_COLUMN],
text_b = None,
label = x[LABEL_COLUMN]), axis = 1)
train_InputExamples = train.apply(lambda x: bert.run_classifier.InputExample(guid=None,
text_a = x[DATA_COLUMN],
text_b = None,
label = x[LABEL_COLUMN]), axis = 1)
val_InputExamples = val.apply(lambda x: bert.run_classifier.InputExample(guid=None,
text_a = x[DATA_COLUMN],
text_b = None,
label = x[LABEL_COLUMN]), axis = 1)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
# Training the model for each combination of the hyperparameters.
x_train = X_train
x_test, y_test = X_val , y_val
#A unique number for each training session
session_num = 0
#Nested for loop training with all possible combinathon of hyperparameters
for num_units in HP_NUM_UNITS.domain.values:
#A function to log the training process
def run(run_dir, hparams):
with tf.summary.create_file_writer(run_dir).as_default():
hp.hparams(hparams)
rmse = train_test_model(hparams)
tf.summary.scalar(METRIC_RMSE, rmse, step=10)