Created
September 12, 2023 19:16
-
-
Save anarazel/72389c9d9531dd06d2230a8c5ec5babd to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import sys | |
def quantplot(df, percentile_limit=0.001, n=10, semilog = False): | |
quantiles = np.linspace(0+percentile_limit, 1-percentile_limit, num=n*2+1) | |
alpha = 1/n | |
# XXX: Caller | |
interval = '1s' | |
df_rs = df.resample(interval, on='time_us') | |
x_source = df_rs['elapsed_us'] | |
# quantile() generates a multi-index with an index "column" for each | |
# computed quantile. Unstack moves those to result set columns. | |
# | |
# XXX: Column | |
df_q = x_source.quantile(quantiles).unstack() | |
# XXX, should perhaps be determined on the caller level? | |
y = df_q.index.seconds.values | |
# XXX, add optional smoothing? | |
#df_q = df_q.rolling(3).max() | |
fig, ax = plt.subplots() | |
if semilog: | |
ax.semilogy() | |
# Plot "area" between 50% quantile and the "lower" quantiles. By | |
# overlapping multiple transparent areas the more common quantiles become | |
# darker. Separate from "higher" quantiles so a different color can be used. | |
ranges = [] | |
for i in range(0, n): | |
#print('below', quantiles[i], quantiles[n]) | |
ranges.append(ax.fill_between(y, df_q[quantiles[i]], df_q[quantiles[n]], alpha=alpha, color='g', edgecolor=None)) | |
# Same as above, but for "higher quantiles". | |
for i in range(n+1, (n*2)): | |
#print('above', quantiles[n], quantiles[i]) | |
ranges.append(ax.fill_between(y, df_q[quantiles[n]], df_q[quantiles[i]], alpha=alpha, color='g', edgecolor=None)) | |
# Plot median quantile as a line. | |
ax.plot(y, df_q[quantiles[n]], color='g', label='median quantile') | |
# Also add mean as a line | |
ax.plot(y, x_source.mean(), color='b', label = 'mean') | |
ax.set_xlabel('time in s') | |
ax.set_ylabel('duration in us') | |
fig.legend() | |
return fig, ax, ranges | |
if len(sys.argv) < 2: | |
print("pass file(s) as args", file=sys.stderr) | |
sys.exit(1) | |
for fname in sys.argv[1:]: | |
df = pd.read_csv(fname, | |
sep = ' ', | |
names = ['client', 'tx', 'elapsed_us', 'script_no', 'srctime_s', 'srctime_us'], | |
usecols = ['elapsed_us', 'srctime_s', 'srctime_us'], | |
engine = 'c') | |
# combine time-in-seconds with the microseconds column | |
usec_per_s = 1_000_000 | |
df['time_us'] = df['srctime_s'] * usec_per_s + df['srctime_us'] | |
# make time relative to start | |
start = df.loc[0,'time_us'] | |
df['time_us'] = (df['time_us'] - start).astype('timedelta64[us]') | |
fig, ax, ranges = quantplot(df) | |
fig.set_figwidth(15) | |
fig.set_figheight(4) | |
fig.show() | |
plt.show(block=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment