Created
July 15, 2018 16:13
-
-
Save anastasiia-kornilova/0e936cd546d78233d43c2f655da7caa1 to your computer and use it in GitHub Desktop.
This is the simplest implementation of gaussian_filter1d from Python scipy library.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import static java.lang.Math.*; | |
public class GaussSmooth { | |
private static double gauss(double sigma, double x) { | |
double expVal = -0.5 * (pow(x, 2) / pow(sigma, 2)); | |
return exp(expVal); | |
} | |
private static double[] gaussKernel1d(double sigma, int lw) { | |
double[] weights = new double[lw * 2 + 1]; | |
double sum = 0.0; | |
// count weights | |
for (int i = -lw; i <= lw; i++) { | |
weights[lw + i] = gauss(sigma, -i); | |
sum += weights[lw +i]; | |
} | |
// normalize (sum != 0) | |
for (int i = -lw; i <= lw; i++) { | |
weights[lw + i] /= sum; | |
} | |
return weights; | |
} | |
private static double[] correlate1d(double[] input, double[] weights) { | |
double[] output = new double[input.length]; | |
for (int i = 0; i < input.length; i++) { | |
double sum = 0.0; | |
int radius = weights.length / 2; | |
for (int j = 0; j < weights.length; j++) { | |
if (i - radius + j < 0) { | |
sum += input[-(i - radius + j) - 1] * weights[j]; | |
} else if (i - radius + j >= input.length) { | |
sum += input[2 * input.length - (i - radius + j) - 1] * weights[j]; | |
} else { | |
sum += input[i - radius + j] * weights[j]; | |
} | |
} | |
output[i] = sum; | |
} | |
return output; | |
} | |
public static double[] gaussian_filter1d(double[] array, float sigma, float truncate) { | |
int lw = (int)(truncate * sigma + 0.5f); | |
return correlate1d(array, gaussKernel1d(sigma, lw)); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment