Last active
December 5, 2019 12:08
-
-
Save andersx/4b50d8d995d537946b859fb318cfe292 to your computer and use it in GitHub Desktop.
Test to verify that kernel matrices for FCHL19 are positive-definite.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# | |
# Data must be downloaded from from http://quantum-machine.org/gdml/#datasets | |
# | |
import sys | |
import numpy as np | |
import qml | |
from qml.math import cho_solve | |
from qml.representations import generate_fchl_acsf | |
from qml.kernels import get_local_symmetric_kernel | |
from qml.kernels import get_symmetric_gdml_kernel | |
from qml.kernels import get_symmetric_gp_kernel | |
from tqdm import tqdm | |
def get_reps_fchl(indexes, coords, charges): | |
max_atoms = len(charges) | |
elements = sorted(list(set(charges))) | |
print("Max atoms:", max_atoms) | |
print("Elements:", elements) | |
X = [] | |
dX = [] | |
Q = [] | |
for i, idx in tqdm(enumerate(indexes), desc="FCHL19 representations"): | |
# print(i, idx, coords[idx]) | |
(x, dx) = generate_fchl_acsf(charges, coords[idx], elements=elements, gradients=True) | |
dX.append(dx) | |
X.append(x) | |
Q.append(charges) | |
X = np.array(X) | |
dX = np.array(dX) | |
return X, dX, Q | |
def test_definite(): | |
print(sys.argv) | |
name = sys.argv[1] | |
n = int(sys.argv[2]) | |
Q_data = np.load("%s_dft_charges.npy" % name) | |
R_data = np.load("%s_dft_coords.npy" % name) | |
indexes = list(range(n)) | |
X, dX, Q = get_reps_fchl(indexes, R_data, Q_data) | |
sigma = 2.0 | |
llambda = 1e-10 | |
print("KRR Kernel") | |
K = get_local_symmetric_kernel(X, Q, sigma) | |
K[np.diag_indices_from(K)] += llambda | |
eigen_vals, eigen_vectors = np.linalg.eigh(K) | |
print(eigen_vals) | |
print("GDML Kernel") | |
K = get_symmetric_gdml_kernel(X, dX, Q, sigma) | |
K[np.diag_indices_from(K)] += llambda | |
eigen_vals, eigen_vectors = np.linalg.eigh(K) | |
print(eigen_vals) | |
print("GPR Kernel") | |
K = get_symmetric_gp_kernel(X, dX, Q, sigma) | |
K[np.diag_indices_from(K)] += llambda | |
eigen_vals, eigen_vectors = np.linalg.eigh(K) | |
print(eigen_vals) | |
if __name__ == "__main__": | |
test_definite() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment