-
-
Save andersy005/cc0a1b8158d41c30145d1fd5a80e59da to your computer and use it in GitHub Desktop.
Compute large, sparse correlation matrices in parallel using dask.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import dask | |
import dask.array as da | |
import dask.dataframe as dd | |
import sparse | |
@dask.delayed(pure=True) | |
def corr_on_chunked(chunk1, chunk2, corr_thresh=0.9): | |
return sparse.COO.from_numpy((np.dot(chunk1, chunk2.T) > corr_thresh)) | |
def chunked_corr_sparse_dask(data, chunksize=5000, corr_thresh=0.9): | |
# Gets the correlation of a large DataFrame, chunking the computation | |
# Returns a sparse directed adjancy matrix (old->young) | |
# Adapted from https://stackoverflow.com/questions/24717513/python-numpy-corrcoef-memory-error | |
numrows = data.shape[0] | |
data -= np.mean(data, axis=1)[:,None] # subtract means form the input data | |
data /= np.sqrt(np.sum(data**2, axis=1))[:,None] # normalize the data | |
rows = [] | |
for r in range(0, numrows, chunksize): | |
cols = [] | |
for c in range(0, numrows, chunksize): | |
r1 = r + chunksize | |
c1 = c + chunksize | |
chunk1 = data[r:r1] | |
chunk2 = data[c:c1] | |
delayed_array = corr_on_chunked(chunk1, chunk2, corr_thresh=corr_thresh) | |
cols.append(da.from_delayed( | |
delayed_array, | |
dtype='bool', | |
shape=(chunksize, chunksize), | |
)) | |
rows.append(da.hstack(cols)) | |
res = da.vstack(rows).compute() | |
res = sparse.triu(res, k=1) | |
return res.tocsr() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment