Created
August 24, 2016 02:49
-
-
Save andpol5/1fed72bfa75b51084a373f6b2299315d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "alexNet_FCN" | |
layer { | |
name: "data" | |
type: "Python" | |
top: "data" | |
top: "label" | |
python_param { | |
module: "LSPdataLayer" | |
layer: "LSPDataLayer" | |
param_str: "{\'dir\': \'/home/vauser2/data/tmp/train\', \'input\': \'../train.txt\', \'label\': \'../../hpe/lsp/dani/val/val_gt.txt\', \'mean\': (114.89033, 113.26829, 96.56158), \'randomize\': True, \'seed\': None}" | |
} | |
include { phase:TRAIN } | |
} | |
layer { | |
name: "data" | |
type: "Python" | |
top: "data" | |
top: "label" | |
python_param { | |
module: "LSPdataLayer" | |
layer: "LSPDataLayer" | |
param_str: "{\'dir\': \'/home/vauser2/data/tmp/val\', \'input\': \'../val.txt\', \'label\': \'../../hpe/lsp/dani/val/val_gt.txt\', \'mean\': (114.50071, 113.42002, 96.82453), \'randomize\': True, \'seed\': None}" | |
} | |
include { phase:TEST } | |
} | |
layer { | |
name: "reshape_1" | |
type: "Reshape" | |
bottom: "data" | |
top: "datareshape" | |
reshape_param { | |
shape { | |
dim: 5 | |
dim: 10 | |
dim: 451 | |
dim: 451 | |
} | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "datareshape" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 11 | |
stride: 4 | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "norm1" | |
type: "LRN" | |
bottom: "conv1" | |
top: "norm1" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "norm1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 2 | |
kernel_size: 5 | |
group: 2 | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "norm2" | |
type: "LRN" | |
bottom: "conv2" | |
top: "norm2" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "norm2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "conv4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
} | |
} | |
layer { | |
name: "relu4" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
} | |
} | |
layer { | |
name: "relu5" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "fc6-conv" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "fc6-conv" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 4096 | |
kernel_size: 6 | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "fc6-conv" | |
top: "fc6-conv" | |
} | |
layer { | |
name: "drop6" | |
type: "Dropout" | |
bottom: "fc6-conv" | |
top: "fc6-conv" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "fc7-conv" | |
type: "Convolution" | |
bottom: "fc6-conv" | |
top: "fc7-conv" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 4096 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "fc7-conv" | |
top: "fc7-conv" | |
} | |
layer { | |
name: "drop7" | |
type: "Dropout" | |
bottom: "fc7-conv" | |
top: "fc7-conv" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "reshape_2-conv" | |
type: "Reshape" | |
bottom: "fc7-conv" | |
top: "fc7reshape-conv" | |
reshape_param { | |
shape { | |
dim: 1 | |
dim: 20480 | |
dim: 8 | |
dim: 8 | |
} | |
} | |
} | |
layer { | |
name: "fc8-conv" | |
type: "Convolution" | |
bottom: "fc7reshape-conv" | |
top: "fc8-conv" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 7 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "deconv" | |
type: "Deconvolution" | |
bottom: "fc8-conv" | |
top: "deconv" | |
param { | |
lr_mult: 10 | |
} | |
convolution_param { | |
num_output: 7 | |
kernel_size: 221 #63 | |
stride: 33 # 32 | |
bias_term: false | |
weight_filler { | |
type: "bilinear" | |
} | |
} | |
} | |
layer { | |
name: "score_" | |
type: "Crop" | |
bottom: "deconv" | |
bottom: "data" | |
top: "score_" | |
crop_param { | |
axis: 2 | |
offset: 1 | |
} | |
} | |
layer { | |
name: "accuracy_" | |
type: "Accuracy" | |
bottom: "score_" | |
bottom: "label" | |
top: "loss_" | |
include { phase:TEST } | |
} | |
layer { | |
name: "loss_" | |
type: "SoftmaxWithLoss" | |
bottom: "score_" | |
bottom: "label" | |
top: "loss__" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment