Skip to content

Instantly share code, notes, and snippets.

@andpol5
Created August 24, 2016 02:49
Show Gist options
  • Save andpol5/1fed72bfa75b51084a373f6b2299315d to your computer and use it in GitHub Desktop.
Save andpol5/1fed72bfa75b51084a373f6b2299315d to your computer and use it in GitHub Desktop.
name: "alexNet_FCN"
layer {
name: "data"
type: "Python"
top: "data"
top: "label"
python_param {
module: "LSPdataLayer"
layer: "LSPDataLayer"
param_str: "{\'dir\': \'/home/vauser2/data/tmp/train\', \'input\': \'../train.txt\', \'label\': \'../../hpe/lsp/dani/val/val_gt.txt\', \'mean\': (114.89033, 113.26829, 96.56158), \'randomize\': True, \'seed\': None}"
}
include { phase:TRAIN }
}
layer {
name: "data"
type: "Python"
top: "data"
top: "label"
python_param {
module: "LSPdataLayer"
layer: "LSPDataLayer"
param_str: "{\'dir\': \'/home/vauser2/data/tmp/val\', \'input\': \'../val.txt\', \'label\': \'../../hpe/lsp/dani/val/val_gt.txt\', \'mean\': (114.50071, 113.42002, 96.82453), \'randomize\': True, \'seed\': None}"
}
include { phase:TEST }
}
layer {
name: "reshape_1"
type: "Reshape"
bottom: "data"
top: "datareshape"
reshape_param {
shape {
dim: 5
dim: 10
dim: 451
dim: 451
}
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "datareshape"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6-conv"
type: "Convolution"
bottom: "pool5"
top: "fc6-conv"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 4096
kernel_size: 6
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6-conv"
top: "fc6-conv"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6-conv"
top: "fc6-conv"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7-conv"
type: "Convolution"
bottom: "fc6-conv"
top: "fc7-conv"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 4096
kernel_size: 1
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7-conv"
top: "fc7-conv"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7-conv"
top: "fc7-conv"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "reshape_2-conv"
type: "Reshape"
bottom: "fc7-conv"
top: "fc7reshape-conv"
reshape_param {
shape {
dim: 1
dim: 20480
dim: 8
dim: 8
}
}
}
layer {
name: "fc8-conv"
type: "Convolution"
bottom: "fc7reshape-conv"
top: "fc8-conv"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 7
kernel_size: 1
}
}
layer {
name: "deconv"
type: "Deconvolution"
bottom: "fc8-conv"
top: "deconv"
param {
lr_mult: 10
}
convolution_param {
num_output: 7
kernel_size: 221 #63
stride: 33 # 32
bias_term: false
weight_filler {
type: "bilinear"
}
}
}
layer {
name: "score_"
type: "Crop"
bottom: "deconv"
bottom: "data"
top: "score_"
crop_param {
axis: 2
offset: 1
}
}
layer {
name: "accuracy_"
type: "Accuracy"
bottom: "score_"
bottom: "label"
top: "loss_"
include { phase:TEST }
}
layer {
name: "loss_"
type: "SoftmaxWithLoss"
bottom: "score_"
bottom: "label"
top: "loss__"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment