Created
April 10, 2020 22:58
-
-
Save andreajparker/70782b39bdb476162f22e6a62d9f6fdb to your computer and use it in GitHub Desktop.
Install Tensorflow 2.0 with GPU support via CUDA and CuDNN on your Ubuntu 18.04 desktop box
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
## 10-Apr-2020 | |
## Installing tf 2.0 with GPU support using CUDA v10.2 and cuDNN 7.6 on Ubuntu 18.04 | |
### steps #### | |
# verify the system has a cuda-capable gpu | |
# download and install the nvidia cuda toolkit and cudnn | |
# setup environmental variables | |
# verify the installation | |
### | |
### If you have previous installation remove it first. | |
sudo apt-get purge nvidia* | |
sudo apt remove nvidia-* | |
sudo rm /etc/apt/sources.list.d/cuda* | |
sudo apt-get autoremove && sudo apt-get autoclean | |
sudo rm -rf /usr/local/cuda* | |
### to verify your gpu is cuda enable check | |
lspci | grep -i nvidia | |
### gcc compiler is required for development using the cuda toolkit. to verify the version of gcc install enter | |
gcc --version | |
# system update | |
sudo apt-get update | |
sudo apt-get upgrade | |
# install other import packages | |
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev | |
# first get the PPA repository driver | |
sudo add-apt-repository ppa:graphics-drivers/ppa | |
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub | |
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda.list | |
# installing CUDA-10.2 | |
sudo apt-get -o Dpkg::Options::="--force-overwrite" install cuda-10.2 cuda-drivers | |
# setup your paths | |
echo 'export PATH=/usr/local/cuda-10.2/bin:$PATH' >> ~/.bashrc | |
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc | |
source ~/.bashrc | |
sudo ldconfig | |
# install cuDNN v7.6 | |
# in order to download cuDNN you have to be regeistered here https://developer.nvidia.com/developer-program/signup | |
# then download cuDNN v7.6 form https://developer.nvidia.com/cudnn | |
# You need to log into CUDA Developer Network. Just download the tarball to your local machine and unzip it into a | |
# an arbitrary dir there | |
# # CUDNN_TAR_FILE="cudnn-10.2-linux-x64-v7.6.5.32.tgz" | |
# # https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.2_201910.2/cudnn-10.2-linux-x64-v7.6.5.32.tgz | |
# tar -xzvf ${CUDNN_TAR_FILE} | |
# copy the following files into the cuda toolkit directory. | |
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-10.2/include | |
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-10.2/lib64/ | |
sudo chmod a+r /usr/local/cuda-10.2/lib64/libcudnn* | |
# Finally, to verify the installation, check | |
nvidia-smi | |
nvcc -V | |
# Install Tensorflow with GPU support | |
# TODO: Make sure 2.0.0b0 is totally compatible with CUDA 10.2 Toolkit and cuDNN 7.6 | |
pip3 install --user tensorflow-gpu==2.0.0b0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment