Created
August 26, 2021 09:55
-
-
Save andreaschandra/a55f3ee1190344e2b56d73318190be8e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.utils.data import Dataset, DataLoader | |
# create dataset class | |
class Iris(Dataset): | |
def __init__(self, x_array, y_array): | |
self.x = x_array | |
self.y = y_array | |
def __getitem__(self, idx): | |
x = self.x[idx, :] | |
y = self.y[idx] | |
return x, y | |
def __len__(self): | |
return len(self.x) | |
# create random input and target | |
x = torch.rand(10, 4) | |
y = torch.rand(size=(4,)) | |
print(x.shape, y.shape) | |
> torch.Size([10, 4]) torch.Size([4]) | |
# call class Iris | |
dataset = Iris(x, y) | |
# test the class using iterator | |
x, y = next(iter(dataset)) | |
print("x:", x) | |
print("y:", y) | |
> x: tensor([0.2306, 0.7369, 0.7853, 0.3919]) | |
y: tensor(0.6016) | |
# using dataloader to load data per batch | |
data_generator = DataLoader(dataset, batch_size=2) | |
x, y = next(iter(data_generator)) | |
print("x:", x) | |
print("y:", y) | |
> x: tensor([[0.2306, 0.7369, 0.7853, 0.3919], | |
[0.3299, 0.6081, 0.1574, 0.5445]]) | |
y: tensor([0.6016, 0.4003]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment