Last active
December 3, 2015 08:25
-
-
Save andreaskoepf/88c585d46195f8a8f85d to your computer and use it in GitHub Desktop.
A simple lena-denoising auto-encoder SpatialUnpooling test.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'nn' | |
require 'image' | |
require 'optim' | |
require 'cunn' | |
require 'SpatialUnpooling' | |
l = image.lena() | |
a = nn.SpatialConvolution(3,64,7,7) | |
b = nn.SpatialFullConvolution(64,3,7,7) | |
c = nn.SpatialConvolution(64,32,3,3) | |
d = nn.SpatialFullConvolution(32,64,3,3) | |
sp = nn.SpatialMaxPooling(2,2) | |
up = nn.SpatialUnpooling(2,2) | |
net = nn.Sequential() | |
net:add(nn.Dropout(0.9)) -- zero out randomly 90% of input | |
net:add(a) | |
net:add(nn.PReLU()) | |
net:add(sp) | |
net:add(c) | |
net:add(nn.PReLU()) | |
net:add(d) | |
net:add(up) | |
net:add(b) | |
mse = nn.MSECriterion() | |
net:cuda() | |
mse:cuda() | |
l=l:cuda() | |
up.indices = sp.indices | |
-- weight tying | |
d.weight = c.weight | |
d.gradWeight = c.gradWeight | |
b.weight = a.weight | |
b.gradWeight = a.gradWeight | |
function create_filter_image(m, kh, kw, filters) | |
local w = m.weight --:view(3, filters, kh, kw) | |
local img = m.weight.new(kh*3, kw*filters) | |
for i=1,filters do | |
local f = w[i]:clone() | |
-- normalize for better inspection | |
local lb,ub = f:min(), f:max() | |
f:add(-lb):div(ub-lb+1e-10) | |
for j=1,3 do -- input channels | |
img[{{(j-1)*kh+1, j*kh}, {(i-1)*kw+1, i*kw}}] = f[j] | |
end | |
end | |
return img | |
end | |
w, dw = net:getParameters() | |
print(#w) | |
local optimization_target = function(w_) | |
dw:zero() | |
o = net:forward(l) | |
err = mse:forward(o, l) | |
go = mse:backward(o, l) | |
net:backward(l, go) | |
return err, dw | |
end | |
wb = net:get(2).weight:clone() | |
f = create_filter_image(net:get(2), 7, 7, 64) | |
image.save('weights1.png', f) | |
rmsprop_state = { learningRate = 0.0005, alpha = 0.9 } | |
for i=1,10000 do | |
local _, loss = optim.rmsprop(optimization_target, w, rmsprop_state) | |
print(string.format('%d: %f', i, loss[1])) | |
if i%100 == 0 then | |
image.save('weights2.png', create_filter_image(net:get(2), 7, 7, 64)) | |
end | |
end | |
--print(torch.abs(net:get(2).weight - wb)) | |
image.save('test2.png', o) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
local SpatialUnpooling, parent = torch.class('nn.SpatialUnpooling', 'nn.Module') | |
function SpatialUnpooling:__init(kW, kH, dW, dH, padW, padH) | |
parent.__init(self) | |
self.dW = dW or kW | |
self.dH = dH or kH | |
self.padW = padW or 0 | |
self.padH = padH or 0 | |
self.indices = torch.LongTensor() | |
self._indexTensor = torch.LongTensor() | |
end | |
function SpatialUnpooling:updateOutput(input) | |
local n, d, h, w, oh, ow | |
if input:nDimension() == 4 then -- batch | |
n, d, h, w = input:size(1), input:size(2), input:size(3), input:size(4) | |
oh, ow = h * self.dH + 2 * self.padH, w * self.dW + 2 * self.padW | |
self.output:resize(n, d, oh, ow) | |
else | |
n, d, h, w = 1, input:size(1), input:size(2), input:size(3) | |
oh, ow = h * self.dH + 2 * self.padH, w * self.dW + 2 * self.padW | |
self.output:resize(d, oh, ow) | |
end | |
local in_cols, out_cols, rows = h * w, oh * ow, n * d | |
self.output:zero() | |
self.output:view(rows, out_cols):scatter( | |
2, | |
self.indices:view(rows, in_cols):typeAs(self._indexTensor), | |
input:view(rows, in_cols) | |
) | |
return self.output | |
end | |
function SpatialUnpooling:updateGradInput(input, gradOutput) | |
self.gradInput:resizeAs(input) | |
local n, d, h, w, oh, ow | |
if input:nDimension() == 4 then -- batch | |
n, d, h, w, oh, ow = input:size(1), input:size(2), input:size(3), input:size(4), gradOutput:size(3), gradOutput:size(4) | |
else | |
n, d, h, w, oh, ow = 1, input:size(1), input:size(2), input:size(3), gradOutput:size(2), gradOutput:size(3) | |
end | |
local in_cols, out_cols, rows = h * w, oh * ow, n * d | |
self.gradInput:view(rows, in_cols):gather( | |
gradOutput:view(rows, out_cols), | |
2, | |
self.indices:view(rows, in_cols):typeAs(self._indexTensor) | |
) | |
return self.gradInput | |
end | |
function SpatialUnpooling:type(type, tensorCache) | |
parent.type(self, type, tensorCache) | |
if type == 'torch.CudaTensor' then | |
self._indexTensor:type(type) | |
else | |
self._indexTensor = torch.LongTensor() | |
end | |
end | |
function SpatialUnpooling:__tostring__() | |
return string.format('%s(%d,%d)', torch.type(self), self.kW, self.kH) | |
end | |
--[[ | |
--simple test: | |
x = torch.rand(2, 1,10,10) | |
mp = nn.SpatialMaxPooling(2,2) | |
y = mp:forward(x) | |
up = nn.SpatialUnpooling(2,2) | |
up.indices = mp.indices | |
x_ = up:forward(y) | |
y_ = up:backward(y, x_) | |
-- cuda: | |
x = x:cuda() | |
up:cuda() | |
mp:cuda() | |
up.indices = mp.indices | |
y = mp:forward(x) | |
x_ = up:forward(y) | |
y_ = up:backward(y, x_) | |
]] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment