Created
July 23, 2019 12:10
-
-
Save andreemidio/d2cdf3d301fd8df1677e9a315ff845f0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import cv2 | |
import numpy as np | |
import align_images as align | |
import findGabarito as gabarito | |
import contornosInternos | |
import bubble as bubble | |
import imutils | |
from imutils.perspective import four_point_transform | |
from imutils import contours | |
import bitwiseImage as bt | |
import roi as r | |
from matplotlib import pyplot as plt | |
import h5py | |
import numpy as np | |
from skimage import morphology | |
#importação da imagem | |
im = '../template/templatePreenchido.png' | |
#alinhamento da imagem | |
imagemAlinhada = align.alignImages(im) | |
cv2.imwrite('../processadas/processadaAlinhada.png', imagemAlinhada) | |
gabarito = gabarito.findGabarito(imagemAlinhada) | |
dim = (1595,556) | |
gabarito = cv2.resize(gabarito, dim, interpolation=cv2.INTER_CUBIC ) | |
cv2.imwrite('../processadas/gabarito.png', gabarito) | |
gabaritoInteresse = cv2.imread('../processadas/gabarito.png') | |
bolhas, umArrayDePontos, contornosCirculos = bubble.bolhas(gabaritoInteresse) | |
nomalizacao = np.ones(dim) | |
gabaritoInteresse = cv2.addWeighted(gabaritoInteresse, 1.07, np.zeros(gabaritoInteresse.shape, gabaritoInteresse.dtype),0,0) | |
gabaritoInteresse = cv2.normalize(gabaritoInteresse,nomalizacao,150,255, cv2.NORM_MINMAX) | |
gabaritoInteresse = cv2.cvtColor(gabaritoInteresse,cv2.COLOR_BGR2GRAY) | |
blurred = cv2.GaussianBlur(gabaritoInteresse, (17,17),1) | |
thresh = cv2.adaptiveThreshold(gabaritoInteresse, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) | |
edged = cv2.Canny(blurred, 100,200) | |
cnts = cv2.findContours(thresh.copy(), cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE) | |
heirarchy = cnts[1][0] | |
cnts = cnts[0] if imutils.is_cv4() else cnts[1] | |
questions = [] | |
for c in cnts: | |
(x, y, w, h) = cv2.boundingRect(c) | |
ar = w / float(h) | |
if (w >= 20 and h >= 20) and (w <= 25 and h <= 25) and ar >= 0.7 and ar <= 1.3: | |
box = [(x//5)*5, y] | |
questions.append([c, box]) | |
#print(x, y) | |
#cv2.rectangle(gabarito, (x, y), (x+w, y+h), (255, 0, 0), 1) | |
questions = sorted(questions, key=lambda q: q[1][1]) | |
questionCnts = [] | |
''' | |
Agora estamos classificando da esquerda para a direita tomando um lote de 30 contornos | |
que são basicamente uma linha inteira e, em seguida, classificá-los a partir da ordem crescente de x | |
''' | |
boxes = [] | |
for i in np.arange(0, len(questions), 30): | |
# take a row of bubbles | |
q = list(questions[i: i+30]) | |
for o in q: | |
boxes.append(o[1]) | |
q = sorted(q, key=lambda k: k[1][0]) | |
for o in q: | |
questionCnts.append(o[0]) | |
posicaoRespostas = np.empty(0,int) | |
for (q, i) in enumerate(np.arange(0, len(questionCnts), 30)): | |
cnts = contours.sort_contours(questionCnts[i:i+30])[0] | |
for (l ,k )in enumerate(cnts): | |
(x, y, w, h) = cv2.boundingRect(k) | |
if (w >= 20 and h >= 20) and (w <= 25 and h <= 25) and ar >= 0.7 and ar <= 1.3: | |
box = [(x//5)*5, y] | |
#print(x, y) | |
posicaoRespostas = np.append(posicaoRespostas,(l)) | |
cv2.rectangle(bolhas, (x, y), (x+w, y+h), (0, 0, 255), 1) | |
cv2.imshow("Bolhas",bolhas) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
exit() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Test