Last active
January 29, 2018 11:58
-
-
Save andrei-pokrovsky/b10bb0803817686f04b7b5dd81f9ca32 to your computer and use it in GitHub Desktop.
Basic SBNet sample
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# A minimal sample implementing a single sparse convolution layer with synthetic data using SBNet primitives. | |
# | |
import numpy as np | |
import tensorflow as tf | |
sbnet_module = tf.load_op_library('../libsbnet.so') | |
def divup(a, b): | |
return (a+b-1) // b | |
# Specify input tensor dimensions and block-sparsity parameters | |
batch = 4 | |
hw = 256 | |
channels = 64 | |
blockSize = [16, 16] | |
blockStride = [14, 14] | |
blockOffset = [0, 0] | |
blockCount = [divup(hw, blockStride[0]), divup(hw, blockStride[1])] | |
# build kwargs to simplify op calls | |
inBlockParams = { "bsize": blockSize, "boffset": blockOffset, "bstride": blockStride } | |
outBlockParams = { "bsize": [blockSize[0]-2, blockSize[1]-2], "boffset": blockOffset, "bstride": blockStride } | |
# create a random mask representing attention/a priori sparsity | |
# threshold the mask to a specified percentile sparsity | |
mask = np.random.randn(batch, blockCount[0], blockCount[1], channels).astype(np.float32) | |
threshold = np.percentile(mask, 90) | |
sparseMask = np.greater(mask, threshold).astype(np.float32) | |
# upsample the mask to full resolution | |
upsampledMask = sparseMask.repeat(blockStride[0], axis=1).repeat(blockStride[1], axis=2) | |
# create a random input tensor | |
x = tf.constant( np.random.randn(batch, hw, hw, channels).astype(np.float32) ) | |
# create a random weight tensor | |
w = tf.constant( np.random.randn(3, 3, channels, channels).astype(np.float32) ) | |
# reduce the mask to indices by using a fused pooling+indexing operation | |
indices = sbnet_module.reduce_mask(mask, blockCount, tol=0.5, **inBlockParams) | |
# stack active overlapping tiles to batch dimension | |
blockStack = sbnet_module.sparse_gather( | |
x, indices.bin_counts, indices.active_block_indices, transpose=True, **inBlockParams) | |
# perform dense convolution on a sparse stack of tiles | |
convBlocks = tf.nn.conv2d( | |
blockStack, w, strides=[1, 1, 1, 1], padding='VALID', data_format='NCHW') | |
# write/scatter the tiles back on top of original tensor | |
# note that the output tensor is reduced by 1 on each side due to 'VALID' convolution | |
validX = x[:, 1:hw-1, 1:hw-1, :] | |
y = sbnet_module.sparse_scatter( | |
convBlocks, indices.bin_counts, indices.active_block_indices, | |
validX, transpose=True, add=False, atomic=False, **outBlockParams) | |
sess = tf.Session() | |
y_output, = sess.run([y]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment