Last active
October 10, 2024 22:12
-
-
Save andrejbauer/6cd3eddac965c86842e46834a62bcaa5 to your computer and use it in GitHub Desktop.
A predicative version of Tarski's fixed-point theorem.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- A predicative version of Tarski's fixed-point theorem | |
open import Level | |
open import Data.Product | |
module Tarski where | |
-- a complete preorder with carrier at level a, the preorder is at level b, | |
-- and suprema indexed by sets from level c | |
record CompletePreorder a b c : Setω where | |
infix 10 _≤_ | |
-- preorder structure | |
field | |
carrier : Set a | |
_≤_ : carrier → carrier → Set b | |
≤-refl : ∀ x → x ≤ x | |
≤-tran : ∀ {x} y {z} → x ≤ y → y ≤ z → x ≤ z | |
upper-bound : ∀ {I : Set c} (f : I → carrier) (x : carrier) → Set (b ⊔ c) | |
upper-bound f x = ∀ i → f i ≤ x | |
-- suprema | |
field | |
sup : ∀ {I : Set c} → (I → carrier) → carrier | |
sup-is-upper : ∀ {I : Set c} {f : I → carrier} (i : I) → f i ≤ sup f | |
sup-is-least : ∀ {I : Set c} {f : I → carrier} {x : carrier} → upper-bound f x → sup f ≤ x | |
-- equivalence induced by the preorder | |
infix 10 _≈_ | |
_≈_ : carrier → carrier → Set b | |
x ≈ y = x ≤ y × y ≤ x | |
is-monotone-endomap : (carrier → carrier) → Set (a ⊔ b) | |
is-monotone-endomap h = ∀ {x y} → x ≤ y → h x ≤ h y | |
module _ {a b} (P : CompletePreorder a b (a ⊔ b)) where | |
open CompletePreorder P | |
open Σ | |
tarski : ∀ (h : carrier → carrier) → is-monotone-endomap h → Σ[ y ∈ carrier ] h y ≈ y | |
tarski h monotone-h = y , (hy≤y , y≤hy) | |
where | |
postfix = Σ[ z ∈ carrier ] z ≤ h z | |
p : postfix → carrier | |
p (z , _) = z | |
y = sup p | |
y≤hy : y ≤ h y | |
y≤hy = sup-is-least λ { (z , z≤hz) → ≤-tran (h z) z≤hz (monotone-h (sup-is-upper ((z , z≤hz)))) } | |
hy≤y : h y ≤ y | |
hy≤y = sup-is-upper ((h y) , (monotone-h y≤hy)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment