Last active
July 22, 2024 02:27
-
-
Save andrewheiss/c2649533adf8e0d0d50da0ad56e1ed5b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(brms) | |
library(marginaleffects) | |
library(tidybayes) | |
library(ggh4x) | |
library(scales) | |
# Ordered logit model | |
ologit_priors <- c( | |
prior(student_t(1, 0, 3), class = Intercept), | |
prior(student_t(1, 0, 3), class = b) | |
) | |
model3_bayes <- brm( | |
bf(c7_internal_movement ~ derogation_ineffect*panbackdichot + | |
new_cases_z + new_deaths_z + cumulative_cases_z + cumulative_deaths_z + v2x_rule), | |
data = derog, | |
family = "cumulative", | |
prior = ologit_priors, | |
chains = 4, seed = 1234, | |
threads = threading(2) | |
) | |
# Basic normal way with pointranges | |
plot_predictions(model3_bayes, condition = c("derogation_ineffect", "panbackdichot")) + | |
facet_wrap(vars(factor(group, levels = levels(derog$c7_internal_movement)))) + | |
theme_pandem() + | |
theme(legend.position = "bottom") | |
preds_model3 <- model3_bayes |> | |
epred_draws( | |
datagrid(model = model3_bayes, derogation_ineffect = unique, panbackdichot = unique), | |
ndraws = 500, seed = 1234) |> | |
ungroup() |> | |
mutate( | |
derogation_ineffect = factor(derogation_ineffect, labels = c("No derogation", "Derogation"), ordered = TRUE), | |
panbackdichot = factor(panbackdichot, labels = c("No backsliding", "Backsliding"), ordered = TRUE) | |
) | |
# Fancy way with fuzzy stacked bars | |
ggplot(preds_model3, aes(x = .draw, y = .epred)) + | |
geom_area(aes(fill = .category), position = position_stack()) + | |
scale_x_continuous(breaks = NULL, expand = c(0, 0)) + | |
scale_y_continuous(labels = label_percent(), expand = c(0, 0)) + | |
scale_fill_manual(values = clrs[c(7, 4, 2)]) + | |
labs( | |
x = NULL, y = "Cumulative outcome probabilities", | |
fill = "Internal movement measures") + | |
facet_nested_wrap( | |
vars(panbackdichot, derogation_ineffect), | |
strip = strip_nested(background_x = list(element_rect(fill = "grey92"), NULL), by_layer_x = TRUE), | |
nrow = 1 | |
) + | |
theme_pandem() + | |
theme(legend.title.position = "left", legend.position = "top") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment