Created
February 6, 2019 17:19
-
-
Save andrewm4894/aa4ccf8684ae795ea4d5de9e63e1b6dc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import numpy as np | |
| import random | |
| import string | |
| def make_data(start_date='2019-01-01',n_data=30,n_num_var=5,n_cat_var=5,n_cat_var_cardinality_upper=10): | |
| ''' Function to make some data and put it in a df | |
| ''' | |
| dates = pd.date_range(start_date,periods=n_data) | |
| df = pd.DataFrame() | |
| df['date'] = dates | |
| df = df.set_index(dates) | |
| for n in range(n_num_var): | |
| df[f'num_var_{n}'] = np.random.randn(n_data) | |
| for n in range(n_cat_var): | |
| cat_vars_generated = np.unique([''.join(random.choices(string.ascii_uppercase + string.digits, k=np.random.randint(2,8))) for i in range(10000)]) | |
| cat_vars_possible = np.random.choice(cat_vars_generated,np.random.randint(1,n_cat_var_cardinality_upper)) | |
| df[f'cat_var_{n}'] = np.random.choice(cat_vars_possible,n_data) | |
| return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment