Created
October 27, 2018 20:18
-
-
Save andrewssobral/8f7aa9bf77a0414cde18ac92df5a5a8e to your computer and use it in GitHub Desktop.
PyTorch MNIST C++
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// https://github.com/goldsborough/examples/blob/cpp/cpp/mnist/mnist.cpp | |
#include <torch/torch.h> | |
#include <cstddef> | |
#include <iostream> | |
#include <string> | |
#include <vector> | |
struct Net : torch::nn::Module { | |
Net() | |
: conv1(torch::nn::Conv2dOptions(1, 10, /*kernel_size=*/5)), | |
conv2(torch::nn::Conv2dOptions(10, 20, /*kernel_size=*/5)), | |
fc1(320, 50), | |
fc2(50, 10) { | |
register_module("conv1", conv1); | |
register_module("conv2", conv2); | |
register_module("conv2_drop", conv2_drop); | |
register_module("fc1", fc1); | |
register_module("fc2", fc2); | |
} | |
torch::Tensor forward(torch::Tensor x) { | |
x = torch::relu(torch::max_pool2d(conv1->forward(x), 2)); | |
x = torch::relu( | |
torch::max_pool2d(conv2_drop->forward(conv2->forward(x)), 2)); | |
x = x.view({-1, 320}); | |
x = torch::relu(fc1->forward(x)); | |
x = torch::dropout(x, /*p=*/0.5, /*training=*/is_training()); | |
x = fc2->forward(x); | |
return torch::log_softmax(x, /*dim=*/1); | |
} | |
torch::nn::Conv2d conv1; | |
torch::nn::Conv2d conv2; | |
torch::nn::FeatureDropout conv2_drop; | |
torch::nn::Linear fc1; | |
torch::nn::Linear fc2; | |
}; | |
struct Options { | |
std::string data_root{"data"}; | |
int32_t batch_size{64}; | |
int32_t epochs{10}; | |
double lr{0.01}; | |
double momentum{0.5}; | |
bool no_cuda{false}; | |
int32_t seed{1}; | |
int32_t test_batch_size{1000}; | |
int32_t log_interval{10}; | |
}; | |
template <typename DataLoader> | |
void train( | |
int32_t epoch, | |
const Options& options, | |
Net& model, | |
torch::Device device, | |
DataLoader& data_loader, | |
torch::optim::SGD& optimizer, | |
size_t dataset_size) { | |
model.train(); | |
size_t batch_idx = 0; | |
for (auto& batch : data_loader) { | |
auto data = batch.data.to(device), targets = batch.target.to(device); | |
optimizer.zero_grad(); | |
auto output = model.forward(data); | |
auto loss = torch::nll_loss(output, targets); | |
loss.backward(); | |
optimizer.step(); | |
if (batch_idx++ % options.log_interval == 0) { | |
std::cout << "Train Epoch: " << epoch << " [" | |
<< batch_idx * batch.data.size(0) << "/" << dataset_size | |
<< "]\tLoss: " << loss.template item<float>() << std::endl; | |
} | |
} | |
} | |
template <typename DataLoader> | |
void test( | |
Net& model, | |
torch::Device device, | |
DataLoader& data_loader, | |
size_t dataset_size) { | |
torch::NoGradGuard no_grad; | |
model.eval(); | |
double test_loss = 0; | |
int32_t correct = 0; | |
for (const auto& batch : data_loader) { | |
auto data = batch.data.to(device), targets = batch.target.to(device); | |
auto output = model.forward(data); | |
test_loss += torch::nll_loss( | |
output, | |
targets, | |
/*weight=*/{}, | |
Reduction::Sum) | |
.template item<float>(); | |
auto pred = output.argmax(1); | |
correct += pred.eq(targets).sum().template item<int64_t>(); | |
} | |
test_loss /= dataset_size; | |
std::cout << "Test set: Average loss: " << test_loss | |
<< ", Accuracy: " << correct << "/" << dataset_size << std::endl; | |
} | |
struct Normalize : public torch::data::transforms::TensorTransform<> { | |
Normalize(float mean, float stddev) | |
: mean_(torch::tensor(mean)), stddev_(torch::tensor(stddev)) {} | |
torch::Tensor operator()(torch::Tensor input) { | |
return input.sub_(mean_).div_(stddev_); | |
} | |
torch::Tensor mean_, stddev_; | |
}; | |
auto main(int argc, const char* argv[]) -> int { | |
torch::manual_seed(0); | |
Options options; | |
torch::DeviceType device_type; | |
if (torch::cuda::is_available() && !options.no_cuda) { | |
std::cout << "CUDA available! Training on GPU" << std::endl; | |
device_type = torch::kCUDA; | |
} else { | |
std::cout << "Training on CPU" << std::endl; | |
device_type = torch::kCPU; | |
} | |
torch::Device device(device_type); | |
Net model; | |
model.to(device); | |
auto train_dataset = | |
torch::data::datasets::MNIST( | |
options.data_root, torch::data::datasets::MNIST::Mode::kTrain) | |
.map(Normalize(0.1307, 0.3081)) | |
.map(torch::data::transforms::TensorLambda<>( | |
[](torch::Tensor t) { return t.unsqueeze_(0); })) | |
.map(torch::data::transforms::Stack<>()); | |
const auto dataset_size = train_dataset.size(); | |
auto train_loader = torch::data::make_data_loader( | |
std::move(train_dataset), options.batch_size); | |
auto test_loader = torch::data::make_data_loader( | |
torch::data::datasets::MNIST( | |
options.data_root, torch::data::datasets::MNIST::Mode::kTest) | |
.map(Normalize(0.1307, 0.3081)) | |
.map(torch::data::transforms::TensorLambda<>( | |
[](torch::Tensor t) { return t.unsqueeze_(0); })) | |
.map(torch::data::transforms::Stack<>()), | |
options.batch_size); | |
torch::optim::SGD optimizer( | |
model.parameters(), | |
torch::optim::SGDOptions(options.lr).momentum(options.momentum)); | |
for (size_t epoch = 1; epoch <= options.epochs; ++epoch) { | |
train( | |
epoch, options, model, device, *train_loader, optimizer, dataset_size); | |
test(model, device, *test_loader, dataset_size); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment