Created
July 7, 2016 21:22
-
-
Save andrewthad/0e4aab34ed153a77419eb874a13a85b0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# language DataKinds #-} | |
{-# language PolyKinds #-} | |
{-# language GADTs #-} | |
{-# language TypeOperators #-} | |
{-# language RankNTypes #-} | |
{-# language TypeFamilies #-} | |
{-# language TypeInType #-} | |
{-# language TypeFamilyDependencies #-} | |
{-# language UndecidableInstances #-} | |
module Main where | |
import Data.Type.Equality ((:~:)(..)) | |
import qualified Data.Type.Equality as Equality | |
import Data.Kind (Type) | |
data Nat = Zero | Suc Nat | |
type family Sing = (r :: k -> Type) | r -> k | |
data SNat :: Nat -> Type where | |
SZero :: SNat 'Zero | |
SSuc :: SNat n -> SNat ('Suc n) | |
data SBool :: Bool -> Type where | |
STrue :: SBool 'True | |
SFalse :: SBool 'False | |
type instance Sing = SNat | |
type instance Sing = SBool | |
data GreaterThanEq :: Nat -> Nat -> Type where | |
GreaterThanEqZero :: GreaterThanEq n 'Zero | |
GreaterThanEqSuc :: GreaterThanEq n m -> GreaterThanEq ('Suc n) ('Suc m) | |
data Equivalence :: (x -> x -> Type) -> Type where | |
Equivalence :: { equivalenceRefl :: f a a | |
, equivalenceSym :: f a b -> f b a | |
, equivalenceTrans :: f a b -> f b c -> f a c | |
} -> Equivalence f | |
data TotalOrder :: (x -> x -> Type) -> (x -> x -> Type) -> Type where | |
TotalOrder :: | |
{ totalOrderAntisym :: forall a b. g a b -> g b a -> f a b | |
, totalOrderTrans :: forall a b c. Sing a -> Sing b -> Sing c | |
-> GreaterThanEq a b -> GreaterThanEq b c -> GreaterThanEq a c | |
, totalOrderTotal :: forall a b. Sing a -> Sing b -> Either (g b a) (g a b) | |
, totalOrderReflexive :: forall a b. Sing a -> Sing b -> (a :~: b) -> GreaterThanEq a b | |
, totalOrderEquivalence :: Equivalence f | |
} -> TotalOrder f g | |
reflEquivalence :: Equivalence (:~:) | |
reflEquivalence = Equivalence Refl Equality.sym Equality.trans | |
geqReflexive :: SNat a -> SNat b -> (a :~: b) -> GreaterThanEq a b | |
geqReflexive SZero _ Refl = GreaterThanEqZero | |
geqReflexive (SSuc n) (SSuc m) Refl = GreaterThanEqSuc (geqReflexive n m Refl) | |
geqTrans :: SNat a -> SNat b -> SNat c | |
-> GreaterThanEq a b -> GreaterThanEq b c -> GreaterThanEq a c | |
geqTrans _ _ _ _ GreaterThanEqZero = GreaterThanEqZero | |
geqTrans (SSuc sa) (SSuc sb) (SSuc sc) (GreaterThanEqSuc a) (GreaterThanEqSuc b) = | |
GreaterThanEqSuc (geqTrans sa sb sc a b) | |
-- This is total even though GHC does not know that. | |
type family GeqTrans (a :: Nat) (b :: Nat) (c :: Nat) (n :: GreaterThanEq a b) (m :: GreaterThanEq b c) :: GreaterThanEq a c where | |
GeqTrans a b 'Zero d 'GreaterThanEqZero = 'GreaterThanEqZero | |
GeqTrans ('Suc a) ('Suc b) ('Suc c) ('GreaterThanEqSuc g) ('GreaterThanEqSuc f) = | |
'GreaterThanEqSuc (GeqTrans a b c g f) | |
geqTotal :: SNat a -> SNat b -> Either (GreaterThanEq b a) (GreaterThanEq a b) | |
geqTotal SZero _ = Left GreaterThanEqZero | |
geqTotal (SSuc _) SZero = Right GreaterThanEqZero | |
geqTotal (SSuc n) (SSuc m) = | |
case geqTotal n m of | |
Left gt -> Left (GreaterThanEqSuc gt) | |
Right gt -> Right (GreaterThanEqSuc gt) | |
geqTotalOrder :: TotalOrder (:~:) GreaterThanEq | |
geqTotalOrder = TotalOrder geqAntisym geqTrans geqTotal geqReflexive reflEquivalence | |
geqAntisym :: GreaterThanEq n m -> GreaterThanEq m n -> n :~: m | |
geqAntisym GreaterThanEqZero GreaterThanEqZero = Refl | |
geqAntisym (GreaterThanEqSuc a) (GreaterThanEqSuc b) = cong (geqAntisym a b) | |
-- data Val :: x -> Type where | |
-- Top :: Val a | |
-- Bottom :: Val a | |
-- Value :: a -> Val a | |
data Value a = Top | Bottom | Middle a | |
data LiftGeq :: (a -> a -> Type) -> Value a -> Value a -> Type where | |
LiftGeqTop :: LiftGeq f 'Top v | |
LiftGeqBottom :: LiftGeq f v 'Bottom | |
LiftGeqMiddle :: f a b -> LiftGeq f ('Middle a) ('Middle b) | |
data OList :: (a -> a -> Type) -> Value a -> Value a -> Type where | |
OListNil :: LiftGeq f upper lower -> OList f lower upper | |
OListCons :: OList f ('Middle x) upper -> LiftGeq f ('Middle x) lower -> OList f lower upper | |
data MyType (r :: OList f (a :: Value n) b) = MyType | |
-- These type families cannot be written. I am stuck. | |
-- type family Insert (x :: Nat) (ol :: OList f l u) (gt1 :: LiftGeq f ('Middle x) l) (gt2 :: LiftGeq f u ('Middle x)) :: OList f l u where | |
-- Insert x ('OListNil unused1) gtxl gtux = 'OListCons ('OListNil gtux) gtxl | |
-- | |
-- type family ToList (xs :: OList f l u) where | |
-- ToList ('OListNil unused) = '[] | |
-- ToList ('OListCons unused | |
cong :: forall f a b. (a :~: b) -> (f a :~: f b) | |
cong Refl = Refl | |
main :: IO () | |
main = putStrLn "Hello World" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment