Last active
August 29, 2015 14:11
-
-
Save andrie/2f08de846dd8e41912d1 to your computer and use it in GitHub Desktop.
Determine CRAN package clusters (communities)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Determine CRAN package clusters (communities) | |
library(miniCRAN) | |
library(igraph) | |
library(magrittr) | |
# Download matrix of available packages at specific date ------------------ | |
MRAN <- "http://mran.revolutionanalytics.com/snapshot/2014-12-01/" | |
pdb <- MRAN %>% | |
contrib.url(type = "source") %>% | |
available.packages(type="source", filters = NULL) | |
# Use miniCRAN to build a graph of package dependencies ------------------- | |
g <- pdb[, "Package"] %>% | |
makeDepGraph(availPkgs = pdb, suggests=FALSE, enhances=TRUE, includeBasePkgs = FALSE) | |
# Use the page.rank algorithm in igraph ----------------------------------- | |
pr <- g %>% | |
page.rank(directed = FALSE) %>% | |
use_series("vector") %>% | |
sort(decreasing = TRUE) %>% | |
as.matrix %>% | |
set_colnames("page.rank") | |
# Extract top 80% of packages --------------------------------------------- | |
cutoff <- quantile(pr[, "page.rank"], probs = 0.2) | |
popular <- pr[pr[, "page.rank"] >= cutoff, ] | |
toKeep <- names(popular) | |
vids <- V(g)[toKeep] | |
gs <- induced.subgraph(g, vids = toKeep) | |
# Determine communities using walktrap algorithm -------------------------- | |
cl <- walktrap.community(gs, steps = 3) | |
# Define ob | |
topClusters <- table(cl$membership) %>% | |
sort(decreasing = TRUE) %>% | |
head(25) | |
topClusters[1:10] | |
plot(topClusters, main="Cluster size", ylab="Number of members", type="b", lwd=2) | |
# Analyse clusters -------------------------------------------------------- | |
# Helper function to extract names of a specific cluster | |
cluster <- function(i, clusters, pagerank, n=10){ | |
group <- clusters$names[clusters$membership == i] | |
pagerank[group, ] %>% sort(decreasing = TRUE) %>% head(n) | |
} | |
# Display members of cluster "3" | |
# cluster(3, cl, pr) | |
# Display members of top 10 clusters | |
z <- lapply(names(topClusters)[1:10], cluster, clusters=cl, pagerank=pr, n=20) | |
z | |
# Export to excel | |
write.table(file="clipboard", as.data.frame(sapply(z, names)), sep="\t", row.names= FALSE) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment