-
-
Save andviane/6fe42f0c4f694cbe91c98c0753db6d97 to your computer and use it in GitHub Desktop.
Polynomial Regression (Quadratic Fit) in C++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef _POLYNOMIAL_REGRESSION_H | |
#define _POLYNOMIAL_REGRESSION_H __POLYNOMIAL_REGRESSION_H | |
/** | |
* PURPOSE: | |
* | |
* Polynomial Regression aims to fit a non-linear relationship to a set of | |
* points. It approximates this by solving a series of linear equations using | |
* a least-squares approach. | |
* | |
* We can model the expected value y as an nth degree polynomial, yielding | |
* the general polynomial regression model: | |
* | |
* y = a0 + a1 * x + a2 * x^2 + ... + an * x^n | |
* | |
* LICENSE: | |
* | |
* MIT License | |
* | |
* Copyright (c) 2020 Chris Engelsma | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy | |
* of this software and associated documentation files (the "Software"), to deal | |
* in the Software without restriction, including without limitation the rights | |
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
* copies of the Software, and to permit persons to whom the Software is | |
* furnished to do so, subject to the following conditions: | |
* | |
* The above copyright notice and this permission notice shall be included in all | |
* copies or substantial portions of the Software. | |
* | |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
* SOFTWARE. | |
* | |
* @author Chris Engelsma | |
*/ | |
#include<vector> | |
#include<stdlib.h> | |
template <class TYPE> | |
class PolynomialRegression { | |
public: | |
PolynomialRegression(); | |
virtual ~PolynomialRegression(){}; | |
bool fitIt( | |
const std::vector<TYPE> & x, | |
const std::vector<TYPE> & y, | |
const int & order, | |
std::vector<TYPE> & coeffs); | |
}; | |
template <class TYPE> | |
PolynomialRegression<TYPE>::PolynomialRegression() {}; | |
template <class TYPE> | |
bool PolynomialRegression<TYPE>::fitIt( | |
const std::vector<TYPE> & x, | |
const std::vector<TYPE> & y, | |
const int & order, | |
std::vector<TYPE> & coeffs) | |
{ | |
// The size of xValues and yValues should be same | |
if (x.size() != y.size()) { | |
throw std::runtime_error( "The size of x & y arrays are different" ); | |
return false; | |
} | |
// The size of xValues and yValues cannot be 0, should not happen | |
if (x.size() == 0 || y.size() == 0) { | |
throw std::runtime_error( "The size of x or y arrays is 0" ); | |
return false; | |
} | |
size_t N = x.size(); | |
int n = order; | |
int np1 = n + 1; | |
int np2 = n + 2; | |
int tnp1 = 2 * n + 1; | |
TYPE tmp; | |
// X = vector that stores values of sigma(xi^2n) | |
std::vector<TYPE> X(tnp1); | |
for (int i = 0; i < tnp1; ++i) { | |
X[i] = 0; | |
for (int j = 0; j < N; ++j) | |
X[i] += (TYPE)pow(x[j], i); | |
} | |
// a = vector to store final coefficients. | |
std::vector<TYPE> a(np1); | |
// B = normal augmented matrix that stores the equations. | |
std::vector<std::vector<TYPE> > B(np1, std::vector<TYPE> (np2, 0)); | |
for (int i = 0; i <= n; ++i) | |
for (int j = 0; j <= n; ++j) | |
B[i][j] = X[i + j]; | |
// Y = vector to store values of sigma(xi^n * yi) | |
std::vector<TYPE> Y(np1); | |
for (int i = 0; i < np1; ++i) { | |
Y[i] = (TYPE)0; | |
for (int j = 0; j < N; ++j) { | |
Y[i] += (TYPE)pow(x[j], i)*y[j]; | |
} | |
} | |
// Load values of Y as last column of B | |
for (int i = 0; i <= n; ++i) | |
B[i][np1] = Y[i]; | |
n += 1; | |
int nm1 = n-1; | |
// Pivotisation of the B matrix. | |
for (int i = 0; i < n; ++i) | |
for (int k = i+1; k < n; ++k) | |
if (B[i][i] < B[k][i]) | |
for (int j = 0; j <= n; ++j) { | |
tmp = B[i][j]; | |
B[i][j] = B[k][j]; | |
B[k][j] = tmp; | |
} | |
// Performs the Gaussian elimination. | |
// (1) Make all elements below the pivot equals to zero | |
// or eliminate the variable. | |
for (int i=0; i<nm1; ++i) | |
for (int k =i+1; k<n; ++k) { | |
TYPE t = B[k][i] / B[i][i]; | |
for (int j=0; j<=n; ++j) | |
B[k][j] -= t*B[i][j]; // (1) | |
} | |
// Back substitution. | |
// (1) Set the variable as the rhs of last equation | |
// (2) Subtract all lhs values except the target coefficient. | |
// (3) Divide rhs by coefficient of variable being calculated. | |
for (int i=nm1; i >= 0; --i) { | |
a[i] = B[i][n]; // (1) | |
for (int j = 0; j<n; ++j) | |
if (j != i) | |
a[i] -= B[i][j] * a[j]; // (2) | |
a[i] /= B[i][i]; // (3) | |
} | |
coeffs.resize(a.size()); | |
for (size_t i = 0; i < a.size(); ++i) | |
coeffs[i] = a[i]; | |
return true; | |
} | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment