Created
July 25, 2016 13:11
-
-
Save andyferris/fbd6835543e475c238cd5af72408199b to your computer and use it in GitHub Desktop.
Simply symbolic manipulations and some matrix math for Euler angle rotations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module SimpleSymbolic | |
immutable S | |
x::Any | |
end | |
Base.show(io::IO, s::S) = print(io, s.x) | |
function Base.:+(s1::S, s2::S) | |
if s1.x == 0 | |
return s2 | |
elseif s2.x == 0 | |
return s1 | |
else | |
if isa(s1.x, Number) && isa(s2.x, Number) | |
return S(s1.x + s2.x) | |
else | |
return S(string(s1.x) * " + " * string(s2.x)) | |
end | |
end | |
end | |
function Base.:*(s1::S, s2::S) | |
if s1.x == 1 | |
return s2 | |
elseif s2.x == 1 | |
return s1 | |
elseif s1.x == 0 || s2.x == 0 | |
return S(0) | |
else | |
if isa(s1.x, Number) && isa(s2.x, Number) | |
return S(s1.x*s2.x) | |
else | |
if isa(s1.x, String) && isa(s2.x, String) | |
if s1.x[1] == '-' && s2.x[1] == '-' | |
return S(string(s1.x[2:end]) * "*" * string(s2.x[2:end])) | |
end | |
end | |
return S(string(s1.x) * "*" * string(s2.x)) | |
end | |
end | |
end | |
using StaticArrays | |
mx1 = @SMatrix [S(1) S(0) S(0); | |
S(0) S("cosθ₁") S("-sinθ₁"); | |
S(0) S("sinθ₁") S("cosθ₁")] | |
my1 = @SMatrix [S("cosθ₁") S(0) S("sinθ₁"); | |
S(0) S(1) S(0); | |
S("-sinθ₁") S(0) S("cosθ₁")] | |
mz1 = @SMatrix [S("cosθ₁") S("-sinθ₁") S(0); | |
S("sinθ₁") S("cosθ₁") S(0); | |
S(0) S(0) S(1)] | |
mx2 = @SMatrix [S(1) S(0) S(0); | |
S(0) S("cosθ₂") S("-sinθ₂"); | |
S(0) S("sinθ₂") S("cosθ₂")] | |
my2 = @SMatrix [S("cosθ₂") S(0) S("sinθ₂"); | |
S(0) S(1) S(0); | |
S("-sinθ₂") S(0) S("cosθ₂")] | |
mz2 = @SMatrix [S("cosθ₂") S("-sinθ₂") S(0); | |
S("sinθ₂") S("cosθ₂") S(0); | |
S(0) S(0) S(1)] | |
mx3 = @SMatrix [S(1) S(0) S(0); | |
S(0) S("cosθ₃") S("-sinθ₃"); | |
S(0) S("sinθ₃") S("cosθ₃")] | |
my3 = @SMatrix [S("cosθ₃") S(0) S("sinθ₃"); | |
S(0) S(1) S(0); | |
S("-sinθ₃") S(0) S("cosθ₃")] | |
mz3 = @SMatrix [S("cosθ₃") S("-sinθ₃") S(0); | |
S("sinθ₃") S("cosθ₃") S(0); | |
S(0) S(0) S(1)] | |
v = @SVector [S("v[1]"), S("v[2]"), S("v[3]")] | |
myx = my1 * mx2 | |
mxy = mx1 * my2 | |
mxz = mx1 * mz2 | |
mzx = mz1 * mx2 | |
mzy = mz1 * my2 | |
myz = my1 * mz2 | |
myxy = my1 * mx2 * my3 | |
myxz = my1 * mx2 * mz3 | |
mxyx = mx1 * my2 * mx3 | |
mxyz = mx1 * my2 * mz3 | |
mxzx = mx1 * mz2 * mx3 | |
mxzy = mx1 * mz2 * my3 | |
mzxz = mz1 * mx2 * mz3 | |
mzxy = mz1 * mx2 * my3 | |
mzyz = mz1 * my2 * mz3 | |
mzyx = mz1 * my2 * mx3 | |
myzy = my1 * mz2 * my3 | |
myzx = my1 * mz2 * mx3 | |
export S, mx1, my1, mz1, mx2, my2, mz2, mx3, my3, mz3, v, mxy, myx, mxz, mxz, mzy, myz, | |
myxy, myxz, mxyx, mxyz, mxzx, mxzy, mzxz, mzxy, mzyz, mzyx, myzy, myzx | |
end # module |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Check out my fork - you can do the above very cleanly with a mixture of builtin arithmetic and Expr :-) More type system usage FTW!
As a side effect, when you actually use this to generate code, you automatically get out the Expr you were looking for :-)