Last active
June 12, 2018 10:06
-
-
Save andysheen/f7f49ce47a3064513cdf14d1cbcd2729 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import cv2 | |
import imutils | |
from imutils.video.pivideostream import PiVideoStream | |
import numpy as np | |
import json | |
import time | |
import datetime | |
import os | |
import subprocess | |
from threading import Thread | |
class LinedrawingTimelapse(Thread): | |
def __init__(self, configuration): | |
self.cancelled = False | |
self.config = configuration | |
# Create full screen OpenCV window. | |
cv2.namedWindow("Output", cv2.WND_PROP_FULLSCREEN) | |
cv2.setWindowProperty("Output", cv2.WND_PROP_FULLSCREEN, 1) | |
# Start video stream. | |
self.vs = PiVideoStream().start() | |
time.sleep(self.config["camera_warmup_time"]) | |
self.mode = 0 | |
self.lines = None | |
self.avg = None | |
self.is_recording = False | |
self.last_capture_time = time.time() | |
self.last_preview_time = time.time() | |
self.last_countdown_time = time.time() | |
self.capture_index = 0 | |
self.preview_index = 0 | |
self.first_capture = None | |
self.countdown = None | |
self.font = cv2.FONT_HERSHEY_SIMPLEX | |
def run(self): | |
while not self.cancelled: | |
self.update() | |
def cancel(self): | |
self.vs.stop() | |
cv2.destroyAllWindows() | |
self.cancelled = True | |
def update(self): | |
frame = self.vs.read() | |
frame = imutils.resize(frame, width=320, height=240) | |
if self.config["mirror_camera"] is 1: | |
frame = cv2.flip(frame, 1) | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
self.lines = imutils.auto_canny(gray) | |
if self.mode is 0: | |
self.standby(gray) | |
elif self.mode is 1: | |
self.starting(gray) | |
if self.is_peephole_open(gray) is False: | |
self.mode = 0 | |
elif self.mode is 2: | |
self.recording(gray) | |
if self.is_peephole_open(gray) is False: | |
self.mode = 0 | |
cv2.waitKey(10) | |
def standby(self, img): | |
output = np.zeros((240, 320, 1), np.uint8) | |
output = self.insert_centered_text(output, "Open peephole to start recording.") | |
if self.config["flip_video"] is 1: | |
output = imutils.rotate(output, angle=180) | |
cv2.imshow("Output", output) | |
if self.is_peephole_open(img) is True: | |
self.mode = 1 | |
def starting(self, img): | |
output = self.lines | |
# preview the image before the | |
if self.countdown is None: | |
self.countdown = self.config["countdown"] | |
elif self.countdown > 0: | |
output = self.insert_centered_text(output, "Starting in " + str(self.countdown), on_rectangle=True) | |
current_time = time.time() | |
if current_time - self.last_countdown_time >= 1: | |
self.countdown = self.countdown - 1 | |
self.last_countdown_time = current_time | |
elif self.countdown is 0: | |
self.countdown = None | |
self.mode = 2 | |
if self.config["flip_video"] is 1: | |
output = imutils.rotate(output, angle=180) | |
cv2.imshow("Output", output) | |
if self.is_peephole_open(img) is False: | |
self.countdown = None | |
self.mode = 0 | |
def recording(self, img): | |
# get current timelapse frequency | |
timelapse_frequency = self.get_timelapse_frequency(img) | |
# define first capture file name | |
if self.first_capture is None: | |
timestamp = datetime.datetime.now() | |
self.first_capture = timestamp.strftime('%Y-%m-%d-%H-%M-%S') | |
# capture frame | |
current_time = time.time() | |
if current_time - self.last_capture_time >= timelapse_frequency: | |
file_name = "-%d.jpg" % self.capture_index | |
cv2.imwrite(self.first_capture + file_name, self.lines) | |
self.capture_index = self.capture_index + 1 | |
self.last_capture_time = current_time | |
# display preview image | |
if current_time - self.last_preview_time >= self.config["timelapse_preview_speed"] and self.capture_index > 1: | |
if self.preview_index > self.capture_index-1: | |
self.preview_index = 0 | |
current_file = self.first_capture + "-%d.jpg" % self.preview_index | |
current_frame = cv2.imread(current_file, cv2.IMREAD_COLOR) | |
cv2.imshow("Output", current_frame) | |
self.preview_index = self.preview_index + 1 | |
self.last_preview_time = current_time | |
if self.is_peephole_open(img) is False: | |
self.save_mp4(self.first_capture) | |
self.first_capture = None | |
self.mode = 0 | |
def is_peephole_open(self, g): | |
fixed_lines = cv2.Canny(g, self.config["canny_threshold"], self.config["canny_ratio"] * self.config["canny_threshold"], | |
apertureSize=self.config["canny_aperturesize"]) | |
non_zeros = cv2.countNonZero(fixed_lines) | |
if non_zeros == 0: | |
return False | |
else: | |
return True | |
def get_timelapse_frequency(self, img): | |
img = cv2.GaussianBlur(img, (21, 21), 0) | |
if self.avg is None: | |
self.avg = img.copy().astype("float") | |
cv2.accumulateWeighted(img, self.avg, self.config["delta_threshold"]) | |
frame_delta = cv2.absdiff(img, cv2.convertScaleAbs(self.avg)) | |
motion_factor = 1 - ((cv2.countNonZero(frame_delta) + 0.0) / (frame_delta.shape[0] * frame_delta.shape[1])) | |
motion_factor = self.constrain(motion_factor, self.config["min_motion_factor"], | |
self.config["max_motion_factor"]) | |
return self.map_factor(motion_factor, self.config["min_motion_factor"], self.config["max_motion_factor"], | |
self.config["min_timelapse_frequency"], self.config["max_timelapse_frequency"]) | |
def insert_centered_text(self, img, txt, on_rectangle=False, size=0.5, stroke=1): | |
textsize, _ = cv2.getTextSize(txt, self.font, size, stroke) | |
h, w = img.shape[:2] | |
xPos = (w - textsize[0]) / 2 | |
yPos = (h - textsize[1]) / 2 | |
if on_rectangle is True: | |
cv2.rectangle(img, (xPos - 1, yPos - textsize[1]), (xPos + textsize[0] + 1, yPos + 1), (0), -1) | |
cv2.putText(img, txt, (xPos, yPos), self.font, size, (255), stroke, cv2.LINE_AA) | |
return img | |
def save_mp4(self, f): | |
subprocess.Popen(["avconv", "-r", "2", "-start_number", "1", "-i", f + "-%d.jpg", "-b:v", | |
"1000k", f + ".mp4"]) | |
@staticmethod | |
def paste_png(base, overlay_filename): | |
overlay = cv2.imread(overlay_filename, -1) | |
overlay_bgr = overlay[:, :, :3] | |
overlay_mask = overlay[:, :, 3:] | |
# inverse mask | |
bg_mask = 255 - overlay_mask | |
# turn masks into three channel masks | |
overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR) | |
bg_mask = cv2.cvtColor(bg_mask, cv2.COLOR_GRAY2BGR) | |
base_part = (base * (1 / 255.0)) * (bg_mask * (1 / 255.0)) | |
overlay_part = (overlay_bgr * (1 / 255.0)) * (overlay_mask * (1 / 255.0)) | |
return np.uint8(cv2.addWeighted(base_part, 255.0, overlay_part, 255.0, 0.0)) | |
@staticmethod | |
def constrain(val, min_val, max_val): | |
return max(min(max_val, val), min_val) | |
@staticmethod | |
def map_factor(x, in_min, in_max, out_min, out_max): | |
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min | |
def main(): | |
os.chdir("/home/pi/LinedrawingTimelapse") | |
config = json.load(open("conf.json")) | |
print("[INFO] Started main.") | |
timelapseInstance = LinedrawingTimelapse(config) | |
timelapseInstance.run() | |
if __name__ == '__main__': | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment