Last active
May 26, 2020 04:53
-
-
Save aneesha/103b2c7b8bd863b572f164ed435dc6e2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer | |
from sklearn.datasets import fetch_20newsgroups | |
from sklearn.decomposition import NMF, LatentDirichletAllocation | |
import numpy as np | |
def display_topics(H, W, feature_names, documents, no_top_words, no_top_documents): | |
for topic_idx, topic in enumerate(H): | |
print "Topic %d:" % (topic_idx) | |
print " ".join([feature_names[i] | |
for i in topic.argsort()[:-no_top_words - 1:-1]]) | |
top_doc_indices = np.argsort( W[:,topic_idx] )[::-1][0:no_top_documents] | |
for doc_index in top_doc_indices: | |
print documents[doc_index] | |
dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) | |
documents = dataset.data | |
no_features = 1000 | |
# NMF is able to use tf-idf | |
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=no_features, stop_words='english') | |
tfidf = tfidf_vectorizer.fit_transform(documents) | |
tfidf_feature_names = tfidf_vectorizer.get_feature_names() | |
# LDA can only use raw term counts for LDA because it is a probabilistic graphical model | |
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=no_features, stop_words='english') | |
tf = tf_vectorizer.fit_transform(documents) | |
tf_feature_names = tf_vectorizer.get_feature_names() | |
no_topics = 5 | |
# Run NMF | |
nmf_model = NMF(n_components=no_topics, random_state=1, alpha=.1, l1_ratio=.5, init='nndsvd').fit(tfidf) | |
nmf_W = nmf_model.transform(tfidf) | |
nmf_H = nmf_model.components_ | |
# Run LDA | |
lda_model = LatentDirichletAllocation(n_topics=no_topics, max_iter=5, learning_method='online', learning_offset=50.,random_state=0).fit(tf) | |
lda_W = lda_model.transform(tf) | |
lda_H = lda_model.components_ | |
no_top_words = 5 | |
no_top_documents = 2 | |
display_topics(nmf_H, nmf_W, tfidf_feature_names, documents, no_top_words, no_top_documents) | |
display_topics(lda_H, lda_W, tf_feature_names, documents, no_top_words, no_top_documents) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment