-
-
Save anfedorov/5a5b3494ccd54af7df9b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import struct | |
def read(f, s, offset=0): | |
return struct.unpack(f, s[offset:offset+struct.calcsize(f)]) | |
def read_files(imgf, labelf): | |
f = open(imgf, 'rb') | |
hf = '>iiii' | |
_, _, rs, cs = struct.unpack(hf, f.read(struct.calcsize(hf))) | |
s = f.read() | |
n = len(s) / struct.calcsize('B') / rs / cs | |
images = np.ndarray((n, rs*cs, 1), 'B', buffer(s)) / 255. | |
f = open(labelf, 'rb') | |
hf = '>ii' | |
struct.unpack(hf, f.read(struct.calcsize(hf))) | |
s = f.read() | |
n = len(s) / struct.calcsize('B') | |
ls = np.ndarray(n, 'B', buffer(s)) | |
labels = np.zeros((n, 10, 1)) | |
for i, l in enumerate(ls): | |
labels[i][l][0] = 1.0 | |
# labels = ls | |
return (images, labels) | |
training_images, training_labels = read_files('train-images.idx3-ubyte', 'train-labels.idx1-ubyte') | |
test_images, test_labels = read_files('t10k-images.idx3-ubyte', 't10k-labels.idx1-ubyte') | |
from ch1 import Network | |
nn = Network([784, 25, 10]) | |
# from ch1 import sigmoid | |
# a = test_images[0] | |
# print sigmoid(np.dot(nn.weights[1], sigmoid(np.dot(nn.weights[0], a) + nn.biases[0])) + nn.biases[1]) | |
nn.SGD( | |
training_data=zip(training_images, training_labels), | |
epochs=30, | |
mini_batch_size=10, | |
eta=5.0, | |
test_data=zip(test_images, test_labels) | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment