Skip to content

Instantly share code, notes, and snippets.

@anilpai
Created April 1, 2025 14:02
Show Gist options
  • Save anilpai/170d6b332816a4afaa9e5d7daf596db1 to your computer and use it in GitHub Desktop.
Save anilpai/170d6b332816a4afaa9e5d7daf596db1 to your computer and use it in GitHub Desktop.
from typing import List, Tuple
class UnionFind:
def __init__(self, size: int):
self.parent = [i for i in range(size)]
self.rank = [0] * size
def find(self, x: int) -> int:
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x]) # Path compression
return self.parent[x]
def union(self, x: int, y: int):
x_root = self.find(x)
y_root = self.find(y)
if x_root == y_root:
return
# Union by rank
if self.rank[x_root] < self.rank[y_root]:
self.parent[x_root] = y_root
else:
self.parent[y_root] = x_root
if self.rank[x_root] == self.rank[y_root]:
self.rank[x_root] += 1
def count_lakes(grid: List[List[int]]) -> int:
if not grid:
return 0
rows, cols = len(grid), len(grid[0])
uf = UnionFind(rows * cols)
directions = [(0, 1), (1, 0)] # Only check right and down to avoid double-counting
# First pass: Build Union-Find structure
for i in range(rows):
for j in range(cols):
if grid[i][j] == 0: # Only process water cells
current = i * cols + j
for di, dj in directions:
ni, nj = i + di, j + dj
if ni < rows and nj < cols and grid[ni][nj] == 0:
neighbor = ni * cols + nj
uf.union(current, neighbor)
# Second pass: Count unique lakes
lakes = set()
for i in range(rows):
for j in range(cols):
if grid[i][j] == 0:
lakes.add(uf.find(i * cols + j))
return len(lakes)
def lake_size(grid: List[List[int]], coord: Tuple[int, int]) -> int:
if not grid or not (0 <= coord[0] < len(grid)) or not (0 <= coord[1] < len(grid[0])):
return 0
if grid[coord[0]][coord[1]] == 1: # Land
return 0
# Reuse the count_lakes Union-Find setup
rows, cols = len(grid), len(grid[0])
uf = UnionFind(rows * cols)
directions = [(0, 1), (1, 0)]
for i in range(rows):
for j in range(cols):
if grid[i][j] == 0:
current = i * cols + j
for di, dj in directions:
ni, nj = i + di, j + dj
if ni < rows and nj < cols and grid[ni][nj] == 0:
uf.union(current, ni * cols + nj)
target = coord[0] * cols + coord[1]
root = uf.find(target)
return sum(1 for i in range(rows) for j in range(cols)
if grid[i][j] == 0 and uf.find(i * cols + j) == root)
# Test Cases
grid1 = [
[1, 1, 0, 1, 1],
[1, 1, 0, 1, 1],
[0, 0, 1, 0, 0],
[1, 1, 0, 1, 1]
]
grid2 = [
[1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1]
]
print("Number of lakes in grid1:", count_lakes(grid1)) # Output: 3
print("Size of lake at (2,0) in grid1:", lake_size(grid1, (2, 0))) # Output: 4
print("Number of lakes in grid2:", count_lakes(grid2)) # Output: 4
print("Size of lake at (3,1) in grid2:", lake_size(grid2, (3, 1))) # Output: 6
# Time Complexity Analysis
# Initialization: O(mn) For grid traversal
# Union-Find: O(mn α(mn)) α is inverse Ackermann function
# Lake counting: O(mn) Final pass through water cells
# Total: O(mn α(mn)) Effectively linear for practical purposes
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment