Created
April 1, 2025 14:02
-
-
Save anilpai/170d6b332816a4afaa9e5d7daf596db1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import List, Tuple | |
class UnionFind: | |
def __init__(self, size: int): | |
self.parent = [i for i in range(size)] | |
self.rank = [0] * size | |
def find(self, x: int) -> int: | |
if self.parent[x] != x: | |
self.parent[x] = self.find(self.parent[x]) # Path compression | |
return self.parent[x] | |
def union(self, x: int, y: int): | |
x_root = self.find(x) | |
y_root = self.find(y) | |
if x_root == y_root: | |
return | |
# Union by rank | |
if self.rank[x_root] < self.rank[y_root]: | |
self.parent[x_root] = y_root | |
else: | |
self.parent[y_root] = x_root | |
if self.rank[x_root] == self.rank[y_root]: | |
self.rank[x_root] += 1 | |
def count_lakes(grid: List[List[int]]) -> int: | |
if not grid: | |
return 0 | |
rows, cols = len(grid), len(grid[0]) | |
uf = UnionFind(rows * cols) | |
directions = [(0, 1), (1, 0)] # Only check right and down to avoid double-counting | |
# First pass: Build Union-Find structure | |
for i in range(rows): | |
for j in range(cols): | |
if grid[i][j] == 0: # Only process water cells | |
current = i * cols + j | |
for di, dj in directions: | |
ni, nj = i + di, j + dj | |
if ni < rows and nj < cols and grid[ni][nj] == 0: | |
neighbor = ni * cols + nj | |
uf.union(current, neighbor) | |
# Second pass: Count unique lakes | |
lakes = set() | |
for i in range(rows): | |
for j in range(cols): | |
if grid[i][j] == 0: | |
lakes.add(uf.find(i * cols + j)) | |
return len(lakes) | |
def lake_size(grid: List[List[int]], coord: Tuple[int, int]) -> int: | |
if not grid or not (0 <= coord[0] < len(grid)) or not (0 <= coord[1] < len(grid[0])): | |
return 0 | |
if grid[coord[0]][coord[1]] == 1: # Land | |
return 0 | |
# Reuse the count_lakes Union-Find setup | |
rows, cols = len(grid), len(grid[0]) | |
uf = UnionFind(rows * cols) | |
directions = [(0, 1), (1, 0)] | |
for i in range(rows): | |
for j in range(cols): | |
if grid[i][j] == 0: | |
current = i * cols + j | |
for di, dj in directions: | |
ni, nj = i + di, j + dj | |
if ni < rows and nj < cols and grid[ni][nj] == 0: | |
uf.union(current, ni * cols + nj) | |
target = coord[0] * cols + coord[1] | |
root = uf.find(target) | |
return sum(1 for i in range(rows) for j in range(cols) | |
if grid[i][j] == 0 and uf.find(i * cols + j) == root) | |
# Test Cases | |
grid1 = [ | |
[1, 1, 0, 1, 1], | |
[1, 1, 0, 1, 1], | |
[0, 0, 1, 0, 0], | |
[1, 1, 0, 1, 1] | |
] | |
grid2 = [ | |
[1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1], | |
[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], | |
[1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1], | |
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1], | |
[1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1], | |
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1] | |
] | |
print("Number of lakes in grid1:", count_lakes(grid1)) # Output: 3 | |
print("Size of lake at (2,0) in grid1:", lake_size(grid1, (2, 0))) # Output: 4 | |
print("Number of lakes in grid2:", count_lakes(grid2)) # Output: 4 | |
print("Size of lake at (3,1) in grid2:", lake_size(grid2, (3, 1))) # Output: 6 | |
# Time Complexity Analysis | |
# Initialization: O(mn) For grid traversal | |
# Union-Find: O(mn α(mn)) α is inverse Ackermann function | |
# Lake counting: O(mn) Final pass through water cells | |
# Total: O(mn α(mn)) Effectively linear for practical purposes | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment