Created
June 3, 2019 17:12
-
-
Save anilpai/fe4e11b5c59d8c02813900813396400b to your computer and use it in GitHub Desktop.
Currency Arbitrage using Bellman Ford Algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Tuple, List | |
from math import log | |
rates = [ | |
[1, 0.23, 0.26, 17.41], | |
[4.31, 1, 1.14, 75.01], | |
[3.79, 0.88, 1, 65.93], | |
[0.057, 0.013, 0.015, 1], | |
] | |
currencies = ('PLN', 'EUR', 'USD', 'RUB') | |
def negate_logarithm_convertor(graph: Tuple[Tuple[float]]) -> List[List[float]]: | |
''' log of each rate in graph and negate it''' | |
result = [[-log(edge) for edge in row] for row in graph] | |
return result | |
def arbitrage(currency_tuple: tuple, rates_matrix: Tuple[Tuple[float, ...]]): | |
''' Calculates arbitrage situations and prints out the details of this calculations''' | |
trans_graph = negate_logarithm_convertor(rates_matrix) | |
# Pick any source vertex -- we can run Bellman-Ford from any vertex and get the right result | |
source = 0 | |
n = len(trans_graph) | |
min_dist = [float('inf')] * n | |
min_dist[source] = source | |
# 'Relax edges |V-1| times' | |
for _ in range(n-1): | |
for source_curr in range(n): | |
for dest_curr in range(n): | |
if min_dist[dest_curr] > min_dist[source_curr] + trans_graph[source_curr][dest_curr]: | |
min_dist[dest_curr] = min_dist[source_curr] + trans_graph[source_curr][dest_curr] | |
# if we can still relax edges, then we have a negative cycle | |
for source_curr in range(n): | |
for dest_curr in range(n): | |
if min_dist[dest_curr] > min_dist[source_curr] + trans_graph[source_curr][dest_curr]: | |
print('Found arbitrage: {0} --> {1}'.format(currency_tuple[source_curr], currency_tuple[dest_curr])) | |
else: | |
print('No arbitrage') | |
if __name__ == "__main__": | |
arbitrage(currencies, rates) | |
# Time Complexity: O(N^3) | |
# Space Complexity: O(N^2) | |
# Brute Force: O(N!) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment