Skip to content

Instantly share code, notes, and snippets.

@animesh-agarwal
Created September 30, 2018 18:09
Show Gist options
  • Save animesh-agarwal/3d3e85d3a8b2a6deeb8539af5d4ef5cb to your computer and use it in GitHub Desktop.
Save animesh-agarwal/3d3e85d3a8b2a6deeb8539af5d4ef5cb to your computer and use it in GitHub Desktop.
import operator
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures
np.random.seed(0)
x = 2 - 3 * np.random.normal(0, 1, 20)
y = x - 2 * (x ** 2) + 0.5 * (x ** 3) + np.random.normal(-3, 3, 20)
# transforming the data to include another axis
x = x[:, np.newaxis]
y = y[:, np.newaxis]
polynomial_features= PolynomialFeatures(degree=2)
x_poly = polynomial_features.fit_transform(x)
model = LinearRegression()
model.fit(x_poly, y)
y_poly_pred = model.predict(x_poly)
rmse = np.sqrt(mean_squared_error(y,y_poly_pred))
r2 = r2_score(y,y_poly_pred)
print(rmse)
print(r2)
plt.scatter(x, y, s=10)
# sort the values of x before line plot
sort_axis = operator.itemgetter(0)
sorted_zip = sorted(zip(x,y_poly_pred), key=sort_axis)
x, y_poly_pred = zip(*sorted_zip)
plt.plot(x, y_poly_pred, color='m')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment