Skip to content

Instantly share code, notes, and snippets.

@animesh-agarwal
Created September 23, 2018 09:12
Show Gist options
  • Save animesh-agarwal/9661e7051f5b7e22296e9a91a7a4aa82 to your computer and use it in GitHub Desktop.
Save animesh-agarwal/9661e7051f5b7e22296e9a91a7a4aa82 to your computer and use it in GitHub Desktop.
# imports
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# generate random data-set
np.random.seed(0)
x = np.random.rand(100, 1)
y = 2 + 3 * x + np.random.rand(100, 1)
# sckit-learn implementation
# Model initialization
regression_model = LinearRegression()
# Fit the data(train the model)
regression_model.fit(x, y)
# Predict
y_predicted = regression_model.predict(x)
# model evaluation
rmse = mean_squared_error(y, y_predicted)
r2 = r2_score(y, y_predicted)
# printing values
print('Slope:' ,regression_model.coef_)
print('Intercept:', regression_model.intercept_)
print('Root mean squared error: ', rmse)
print('R2 score: ', r2)
# plotting values
# data points
plt.scatter(x, y, s=10)
plt.xlabel('x')
plt.ylabel('y')
# predicted values
plt.plot(x, y_predicted, color='r')
plt.show()
@ajayspicy07
Copy link

ajayspicy07 commented Jun 11, 2019

Print ('intercept and slope') command ,is printing a matrix for every point in the xy plane

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment