Created
September 18, 2019 11:39
-
-
Save anisayari/2d54c43044d7bb1b29c72c832a0fb1d8 to your computer and use it in GitHub Desktop.
Reduction memory_usage
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def reduce_mem_usage(df): | |
""" iterate through all the columns of a dataframe and modify the data type | |
to reduce memory usage. | |
""" | |
start_mem = df.memory_usage().sum() / 1024 ** 2 | |
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) | |
for col in df.columns: | |
col_type = df[col].dtype | |
if col_type != object: | |
c_min = df[col].min() | |
c_max = df[col].max() | |
if str(col_type)[:3] == 'int': | |
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: | |
df[col] = df[col].astype(np.int8) | |
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: | |
df[col] = df[col].astype(np.int16) | |
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: | |
df[col] = df[col].astype(np.int32) | |
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: | |
df[col] = df[col].astype(np.int64) | |
else: | |
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: | |
df[col] = df[col].astype(np.float16) | |
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: | |
df[col] = df[col].astype(np.float32) | |
else: | |
df[col] = df[col].astype(np.float64) | |
else: | |
df[col] = df[col].astype('category') | |
end_mem = df.memory_usage().sum() / 1024 ** 2 | |
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) | |
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment