Last active
December 10, 2018 00:58
-
-
Save anmolj7/258e05865f228d261e1f09736cc68d3a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division, unicode_literals | |
import os | |
import errno | |
from collections import Counter | |
from hashlib import sha256 | |
import re | |
import json | |
import itertools | |
import logging | |
import requests | |
import numpy as np | |
from numpy.random import choice as random_choice, randint as random_randint, shuffle as random_shuffle, seed as random_seed, rand | |
from numpy import zeros as np_zeros # pylint:disable=no-name-in-module | |
from keras.models import Sequential, load_model | |
from keras.layers import Activation, TimeDistributed, Dense, RepeatVector, Dropout, recurrent | |
from keras.callbacks import Callback | |
# Set a logger for the module | |
LOGGER = logging.getLogger(__name__) # Every log will use the module name | |
LOGGER.addHandler(logging.StreamHandler()) | |
LOGGER.setLevel(logging.DEBUG) | |
random_seed(123) # Reproducibility | |
class Configuration(object): | |
"""Dump stuff here""" | |
CONFIG = Configuration() | |
#pylint:disable=attribute-defined-outside-init | |
# Parameters for the model: | |
CONFIG.input_layers = 2 | |
CONFIG.output_layers = 2 | |
CONFIG.amount_of_dropout = 0.2 | |
CONFIG.hidden_size = 500 | |
CONFIG.initialization = "he_normal" # : Gaussian initialization scaled by fan-in (He et al., 2014) | |
CONFIG.number_of_chars = 100 | |
CONFIG.max_input_len = 60 | |
CONFIG.inverted = True | |
# parameters for the training: | |
CONFIG.batch_size = 100 # As the model changes in size, play with the batch size to best fit the process in memory | |
CONFIG.epochs = 500 # due to mini-epochs. | |
CONFIG.steps_per_epoch = 1000 # This is a mini-epoch. Using News 2013 an epoch would need to be ~60K. | |
CONFIG.validation_steps = 10 | |
CONFIG.number_of_iterations = 10 | |
#pylint:enable=attribute-defined-outside-init | |
DIGEST = sha256(json.dumps(CONFIG.__dict__, sort_keys=True)).hexdigest() | |
# Parameters for the dataset | |
MIN_INPUT_LEN = 5 | |
AMOUNT_OF_NOISE = 0.2 / CONFIG.max_input_len | |
CHARS = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .") | |
PADDING = "☕" | |
DATA_FILES_PATH = "data" | |
DATA_FILES_FULL_PATH = os.path.expanduser(DATA_FILES_PATH) | |
DATA_FILES_URL = "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz" | |
NEWS_FILE_NAME_COMPRESSED = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.shuffled.gz") # 1.1 GB | |
NEWS_FILE_NAME_ENGLISH = "news.2013.en.shuffled" | |
NEWS_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, NEWS_FILE_NAME_ENGLISH) | |
NEWS_FILE_NAME_CLEAN = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.clean") | |
NEWS_FILE_NAME_FILTERED = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.filtered") | |
NEWS_FILE_NAME_SPLIT = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.split") | |
NEWS_FILE_NAME_TRAIN = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.train") | |
NEWS_FILE_NAME_VALIDATE = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.validate") | |
CHAR_FREQUENCY_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, "char_frequency.json") | |
SAVED_MODEL_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, "keras_spell_e{}.h5") # an HDF5 file | |
# Some cleanup: | |
NORMALIZE_WHITESPACE_REGEX = re.compile(r'[^\S\n]+', re.UNICODE) # match all whitespace except newlines | |
RE_DASH_FILTER = re.compile(r'[\-\˗\֊\‐\‑\‒\–\—\⁻\₋\−\﹣\-]', re.UNICODE) | |
RE_APOSTROPHE_FILTER = re.compile(r''|[ʼ՚'‘’‛❛❜ߴߵ`‵´ˊˋ{}{}{}{}{}{}{}{}{}]'.format(unichr(768), unichr(769), unichr(832), | |
unichr(833), unichr(2387), unichr(5151), | |
unichr(5152), unichr(65344), unichr(8242)), | |
re.UNICODE) | |
RE_LEFT_PARENTH_FILTER = re.compile(r'[\(\[\{\⁽\₍\❨\❪\﹙\(]', re.UNICODE) | |
RE_RIGHT_PARENTH_FILTER = re.compile(r'[\)\]\}\⁾\₎\❩\❫\﹚\)]', re.UNICODE) | |
ALLOWED_CURRENCIES = """¥£₪$€฿₨""" | |
ALLOWED_PUNCTUATION = """-!?/;"'%&<>.()[]{}@#:,|=*""" | |
RE_BASIC_CLEANER = re.compile(r'[^\w\s{}{}]'.format(re.escape(ALLOWED_CURRENCIES), re.escape(ALLOWED_PUNCTUATION)), re.UNICODE) | |
# pylint:disable=invalid-name | |
def download_the_news_data(): | |
"""Download the news data""" | |
LOGGER.info("Downloading") | |
try: | |
os.makedirs(os.path.dirname(NEWS_FILE_NAME_COMPRESSED)) | |
except OSError as exception: | |
if exception.errno != errno.EEXIST: | |
raise | |
with open(NEWS_FILE_NAME_COMPRESSED, "wb") as output_file: | |
response = requests.get(DATA_FILES_URL, stream=True) | |
total_length = response.headers.get('content-length') | |
downloaded = percentage = 0 | |
print("»"*100) | |
total_length = int(total_length) | |
for data in response.iter_content(chunk_size=4096): | |
downloaded += len(data) | |
output_file.write(data) | |
new_percentage = 100 * downloaded // total_length | |
if new_percentage > percentage: | |
print("☑", end="") | |
percentage = new_percentage | |
print() | |
def uncompress_data(): | |
"""Uncompress the data files""" | |
import gzip | |
with gzip.open(NEWS_FILE_NAME_COMPRESSED, 'rb') as compressed_file: | |
with open(NEWS_FILE_NAME_COMPRESSED[:-3], 'wb') as outfile: | |
outfile.write(compressed_file.read()) | |
def add_noise_to_string(a_string, amount_of_noise): | |
"""Add some artificial spelling mistakes to the string""" | |
if rand() < amount_of_noise * len(a_string): | |
# Replace a character with a random character | |
random_char_position = random_randint(len(a_string)) | |
a_string = a_string[:random_char_position] + random_choice(CHARS[:-1]) + a_string[random_char_position + 1:] | |
if rand() < amount_of_noise * len(a_string): | |
# Delete a character | |
random_char_position = random_randint(len(a_string)) | |
a_string = a_string[:random_char_position] + a_string[random_char_position + 1:] | |
if len(a_string) < CONFIG.max_input_len and rand() < amount_of_noise * len(a_string): | |
# Add a random character | |
random_char_position = random_randint(len(a_string)) | |
a_string = a_string[:random_char_position] + random_choice(CHARS[:-1]) + a_string[random_char_position:] | |
if rand() < amount_of_noise * len(a_string): | |
# Transpose 2 characters | |
random_char_position = random_randint(len(a_string) - 1) | |
a_string = (a_string[:random_char_position] + a_string[random_char_position + 1] + a_string[random_char_position] + | |
a_string[random_char_position + 2:]) | |
return a_string | |
def _vectorize(questions, answers, ctable): | |
"""Vectorize the data as numpy arrays""" | |
len_of_questions = len(questions) | |
X = np_zeros((len_of_questions, CONFIG.max_input_len, ctable.size), dtype=np.bool) | |
for i in xrange(len(questions)): | |
sentence = questions.pop() | |
for j, c in enumerate(sentence): | |
try: | |
X[i, j, ctable.char_indices[c]] = 1 | |
except KeyError: | |
pass # Padding | |
y = np_zeros((len_of_questions, CONFIG.max_input_len, ctable.size), dtype=np.bool) | |
for i in xrange(len(answers)): | |
sentence = answers.pop() | |
for j, c in enumerate(sentence): | |
try: | |
y[i, j, ctable.char_indices[c]] = 1 | |
except KeyError: | |
pass # Padding | |
return X, y | |
def slice_X(X, start=None, stop=None): | |
"""This takes an array-like, or a list of | |
array-likes, and outputs: | |
- X[start:stop] if X is an array-like | |
- [x[start:stop] for x in X] if X in a list | |
Can also work on list/array of indices: `slice_X(x, indices)` | |
# Arguments | |
start: can be an integer index (start index) | |
or a list/array of indices | |
stop: integer (stop index); should be None if | |
`start` was a list. | |
""" | |
if isinstance(X, list): | |
if hasattr(start, '__len__'): | |
# hdf5 datasets only support list objects as indices | |
if hasattr(start, 'shape'): | |
start = start.tolist() | |
return [x[start] for x in X] | |
else: | |
return [x[start:stop] for x in X] | |
else: | |
if hasattr(start, '__len__'): | |
if hasattr(start, 'shape'): | |
start = start.tolist() | |
return X[start] | |
else: | |
return X[start:stop] | |
def vectorize(questions, answers, chars=None): | |
"""Vectorize the questions and expected answers""" | |
print('Vectorization...') | |
chars = chars or CHARS | |
ctable = CharacterTable(chars) | |
X, y = _vectorize(questions, answers, ctable) | |
# Explicitly set apart 10% for validation data that we never train over | |
split_at = int(len(X) - len(X) / 10) | |
(X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at)) | |
(y_train, y_val) = (y[:split_at], y[split_at:]) | |
print(X_train.shape) | |
print(y_train.shape) | |
return X_train, X_val, y_train, y_val, CONFIG.max_input_len, ctable | |
def generate_model(output_len, chars=None): | |
"""Generate the model""" | |
print('Build model...') | |
chars = chars or CHARS | |
model = Sequential() | |
# "Encode" the input sequence using an RNN, producing an output of hidden_size | |
# note: in a situation where your input sequences have a variable length, | |
# use input_shape=(None, nb_feature). | |
for layer_number in range(CONFIG.input_layers): | |
model.add(recurrent.LSTM(CONFIG.hidden_size, input_shape=(None, len(chars)), kernel_initializer=CONFIG.initialization, | |
return_sequences=layer_number + 1 < CONFIG.input_layers)) | |
model.add(Dropout(CONFIG.amount_of_dropout)) | |
# For the decoder's input, we repeat the encoded input for each time step | |
model.add(RepeatVector(output_len)) | |
# The decoder RNN could be multiple layers stacked or a single layer | |
for _ in range(CONFIG.output_layers): | |
model.add(recurrent.LSTM(CONFIG.hidden_size, return_sequences=True, kernel_initializer=CONFIG.initialization)) | |
model.add(Dropout(CONFIG.amount_of_dropout)) | |
# For each of step of the output sequence, decide which character should be chosen | |
model.add(TimeDistributed(Dense(len(chars), kernel_initializer=CONFIG.initialization))) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
return model | |
class Colors(object): | |
"""For nicer printouts""" | |
green = '\033[92m' | |
red = '\033[91m' | |
close = '\033[0m' | |
class CharacterTable(object): | |
""" | |
Given a set of characters: | |
+ Encode them to a one hot integer representation | |
+ Decode the one hot integer representation to their character output | |
+ Decode a vector of probabilities to their character output | |
""" | |
def __init__(self, chars): | |
self.chars = sorted(set(chars)) | |
self.char_indices = dict((c, i) for i, c in enumerate(self.chars)) | |
self.indices_char = dict((i, c) for i, c in enumerate(self.chars)) | |
@property | |
def size(self): | |
"""The number of chars""" | |
return len(self.chars) | |
def encode(self, C, maxlen): | |
"""Encode as one-hot""" | |
X = np_zeros((maxlen, len(self.chars)), dtype=np.bool) # pylint:disable=no-member | |
for i, c in enumerate(C): | |
X[i, self.char_indices[c]] = 1 | |
return X | |
def decode(self, X, calc_argmax=True): | |
"""Decode from one-hot""" | |
if calc_argmax: | |
X = X.argmax(axis=-1) | |
return ''.join(self.indices_char[x] for x in X if x) | |
def generator(file_name): | |
"""Returns a tuple (inputs, targets) | |
All arrays should contain the same number of samples. | |
The generator is expected to loop over its data indefinitely. | |
An epoch finishes when samples_per_epoch samples have been seen by the model. | |
""" | |
ctable = CharacterTable(read_top_chars()) | |
batch_of_answers = [] | |
while True: | |
with open(file_name) as answers: | |
for answer in answers: | |
batch_of_answers.append(answer.strip().decode('utf-8')) | |
if len(batch_of_answers) == CONFIG.batch_size: | |
random_shuffle(batch_of_answers) | |
batch_of_questions = [] | |
for answer_index, answer in enumerate(batch_of_answers): | |
question, answer = generate_question(answer) | |
batch_of_answers[answer_index] = answer | |
assert len(answer) == CONFIG.max_input_len | |
question = question[::-1] if CONFIG.inverted else question | |
batch_of_questions.append(question) | |
X, y = _vectorize(batch_of_questions, batch_of_answers, ctable) | |
yield X, y | |
batch_of_answers = [] | |
def print_random_predictions(model, ctable, X_val, y_val): | |
"""Select 10 samples from the validation set at random so we can visualize errors""" | |
print() | |
for _ in range(10): | |
ind = random_randint(0, len(X_val)) | |
rowX, rowy = X_val[np.array([ind])], y_val[np.array([ind])] # pylint:disable=no-member | |
preds = model.predict_classes(rowX, verbose=0) | |
q = ctable.decode(rowX[0]) | |
correct = ctable.decode(rowy[0]) | |
guess = ctable.decode(preds[0], calc_argmax=False) | |
if CONFIG.inverted: | |
print('Q', q[::-1]) # inverted back! | |
else: | |
print('Q', q) | |
print('A', correct) | |
print(Colors.green + '☑' + Colors.close if correct == guess else Colors.red + '☒' + Colors.close, guess) | |
print('---') | |
print() | |
class OnEpochEndCallback(Callback): | |
"""Execute this every end of epoch""" | |
def on_epoch_end(self, epoch, logs=None): | |
"""On Epoch end - do some stats""" | |
ctable = CharacterTable(read_top_chars()) | |
X_val, y_val = next(generator(NEWS_FILE_NAME_VALIDATE)) | |
print_random_predictions(self.model, ctable, X_val, y_val) | |
self.model.save(SAVED_MODEL_FILE_NAME.format(epoch)) | |
ON_EPOCH_END_CALLBACK = OnEpochEndCallback() | |
def itarative_train(model): | |
""" | |
Iterative training of the model | |
- To allow for finite RAM... | |
- To allow infinite training data as the training noise is injected in runtime | |
""" | |
model.fit_generator(generator(NEWS_FILE_NAME_TRAIN), steps_per_epoch=CONFIG.steps_per_epoch, | |
epochs=CONFIG.epochs, | |
verbose=1, callbacks=[ON_EPOCH_END_CALLBACK, ], validation_data=generator(NEWS_FILE_NAME_VALIDATE), | |
validation_steps=CONFIG.validation_steps, | |
class_weight=None, max_q_size=10, workers=1, | |
pickle_safe=False, initial_epoch=0) | |
def iterate_training(model, X_train, y_train, X_val, y_val, ctable): | |
"""Iterative Training""" | |
# Train the model each generation and show predictions against the validation dataset | |
for iteration in range(1, CONFIG.number_of_iterations): | |
print() | |
print('-' * 50) | |
print('Iteration', iteration) | |
model.fit(X_train, y_train, batch_size=CONFIG.batch_size, epochs=CONFIG.epochs, | |
validation_data=(X_val, y_val)) | |
print_random_predictions(model, ctable, X_val, y_val) | |
def clean_text(text): | |
"""Clean the text - remove unwanted chars, fold punctuation etc.""" | |
result = NORMALIZE_WHITESPACE_REGEX.sub(' ', text.strip()) | |
result = RE_DASH_FILTER.sub('-', result) | |
result = RE_APOSTROPHE_FILTER.sub("'", result) | |
result = RE_LEFT_PARENTH_FILTER.sub("(", result) | |
result = RE_RIGHT_PARENTH_FILTER.sub(")", result) | |
result = RE_BASIC_CLEANER.sub('', result) | |
return result | |
def preprocesses_data_clean(): | |
"""Pre-process the data - step 1 - cleanup""" | |
with open(NEWS_FILE_NAME_CLEAN, "wb") as clean_data: | |
for line in open(NEWS_FILE_NAME): | |
decoded_line = line.decode('utf-8') | |
cleaned_line = clean_text(decoded_line) | |
encoded_line = cleaned_line.encode("utf-8") | |
clean_data.write(encoded_line + b"\n") | |
def preprocesses_data_analyze_chars(): | |
"""Pre-process the data - step 2 - analyze the characters""" | |
counter = Counter() | |
LOGGER.info("Reading data:") | |
for line in open(NEWS_FILE_NAME_CLEAN): | |
decoded_line = line.decode('utf-8') | |
counter.update(decoded_line) | |
# data = open(NEWS_FILE_NAME_CLEAN).read().decode('utf-8') | |
# LOGGER.info("Read.\nCounting characters:") | |
# counter = Counter(data.replace("\n", "")) | |
LOGGER.info("Done.\nWriting to file:") | |
with open(CHAR_FREQUENCY_FILE_NAME, 'wb') as output_file: | |
output_file.write(json.dumps(counter)) | |
most_popular_chars = {key for key, _value in counter.most_common(CONFIG.number_of_chars)} | |
LOGGER.info("The top %s chars are:", CONFIG.number_of_chars) | |
LOGGER.info("".join(sorted(most_popular_chars))) | |
def read_top_chars(): | |
"""Read the top chars we saved to file""" | |
chars = json.loads(open(CHAR_FREQUENCY_FILE_NAME).read()) | |
counter = Counter(chars) | |
most_popular_chars = {key for key, _value in counter.most_common(CONFIG.number_of_chars)} | |
return most_popular_chars | |
def preprocesses_data_filter(): | |
"""Pre-process the data - step 3 - filter only sentences with the right chars""" | |
most_popular_chars = read_top_chars() | |
LOGGER.info("Reading and filtering data:") | |
with open(NEWS_FILE_NAME_FILTERED, "wb") as output_file: | |
for line in open(NEWS_FILE_NAME_CLEAN): | |
decoded_line = line.decode('utf-8') | |
if decoded_line and not bool(set(decoded_line) - most_popular_chars): | |
output_file.write(line) | |
LOGGER.info("Done.") | |
def read_filtered_data(): | |
"""Read the filtered data corpus""" | |
LOGGER.info("Reading filtered data:") | |
lines = open(NEWS_FILE_NAME_FILTERED).read().decode('utf-8').split("\n") | |
LOGGER.info("Read filtered data - %s lines", len(lines)) | |
return lines | |
def preprocesses_split_lines(): | |
"""Preprocess the text by splitting the lines between min-length and max_length | |
I don't like this step: | |
I think the start-of-sentence is important. | |
I think the end-of-sentence is important. | |
Sometimes the stripped down sub-sentence is missing crucial context. | |
Important NGRAMs are cut (though given enough data, that might be moot). | |
I do this to enable batch-learning by padding to a fixed length. | |
""" | |
LOGGER.info("Reading filtered data:") | |
answers = set() | |
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file: | |
for _line in open(NEWS_FILE_NAME_FILTERED): | |
line = _line.decode('utf-8') | |
while len(line) > MIN_INPUT_LEN: | |
if len(line) <= CONFIG.max_input_len: | |
answer = line | |
line = "" | |
else: | |
space_location = line.rfind(" ", MIN_INPUT_LEN, CONFIG.max_input_len - 1) | |
if space_location > -1: | |
answer = line[:space_location] | |
line = line[len(answer) + 1:] | |
else: | |
space_location = line.rfind(" ") # no limits this time | |
if space_location == -1: | |
break # we are done with this line | |
else: | |
line = line[space_location + 1:] | |
continue | |
answers.add(answer) | |
output_file.write(answer.encode('utf-8') + b"\n") | |
def preprocesses_split_lines2(): | |
"""Preprocess the text by splitting the lines between min-length and max_length | |
Alternative split. | |
""" | |
LOGGER.info("Reading filtered data:") | |
answers = set() | |
for encoded_line in open(NEWS_FILE_NAME_FILTERED): | |
line = encoded_line.decode('utf-8') | |
if CONFIG.max_input_len >= len(line) > MIN_INPUT_LEN: | |
answers.add(line) | |
LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers)) | |
LOGGER.info("Here are some examples:") | |
for answer in itertools.islice(answers, 10): | |
LOGGER.info(answer) | |
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file: | |
output_file.write("".join(answers).encode('utf-8')) | |
def preprocesses_split_lines3(): | |
"""Preprocess the text by selecting only max n-grams | |
Alternative split. | |
""" | |
LOGGER.info("Reading filtered data:") | |
answers = set() | |
for encoded_line in open(NEWS_FILE_NAME_FILTERED): | |
line = encoded_line.decode('utf-8') | |
if line.count(" ") < 5: | |
answers.add(line) | |
LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers)) | |
LOGGER.info("Here are some examples:") | |
for answer in itertools.islice(answers, 10): | |
LOGGER.info(answer) | |
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file: | |
output_file.write("".join(answers).encode('utf-8')) | |
def preprocesses_split_lines4(): | |
"""Preprocess the text by selecting only sentences with most-common words AND not too long | |
Alternative split. | |
""" | |
LOGGER.info("Reading filtered data:") | |
from gensim.models.word2vec import Word2Vec | |
FILTERED_W2V = "fw2v.bin" | |
model = Word2Vec.load_word2vec_format(FILTERED_W2V, binary=True) # C text format | |
print(len(model.wv.index2word)) | |
# answers = set() | |
# for encoded_line in open(NEWS_FILE_NAME_FILTERED): | |
# line = encoded_line.decode('utf-8') | |
# if line.count(" ") < 5: | |
# answers.add(line) | |
# LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers)) | |
# LOGGER.info("Here are some examples:") | |
# for answer in itertools.islice(answers, 10): | |
# LOGGER.info(answer) | |
# with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file: | |
# output_file.write("".join(answers).encode('utf-8')) | |
def preprocess_partition_data(): | |
"""Set asside data for validation""" | |
answers = open(NEWS_FILE_NAME_SPLIT).read().decode('utf-8').split("\n") | |
print('shuffle', end=" ") | |
random_shuffle(answers) | |
print("Done") | |
# Explicitly set apart 10% for validation data that we never train over | |
split_at = len(answers) - len(answers) // 10 | |
with open(NEWS_FILE_NAME_TRAIN, "wb") as output_file: | |
output_file.write("\n".join(answers[:split_at]).encode('utf-8')) | |
with open(NEWS_FILE_NAME_VALIDATE, "wb") as output_file: | |
output_file.write("\n".join(answers[split_at:]).encode('utf-8')) | |
def generate_question(answer): | |
"""Generate a question by adding noise""" | |
question = add_noise_to_string(answer, AMOUNT_OF_NOISE) | |
# Add padding: | |
question += PADDING * (CONFIG.max_input_len - len(question)) | |
answer += PADDING * (CONFIG.max_input_len - len(answer)) | |
return question, answer | |
def generate_news_data(): | |
"""Generate some news data""" | |
print ("Generating Data") | |
answers = open(NEWS_FILE_NAME_SPLIT).read().decode('utf-8').split("\n") | |
questions = [] | |
print('shuffle', end=" ") | |
random_shuffle(answers) | |
print("Done") | |
for answer_index, answer in enumerate(answers): | |
question, answer = generate_question(answer) | |
answers[answer_index] = answer | |
assert len(answer) == CONFIG.max_input_len | |
if random_randint(100000) == 8: # Show some progress | |
print (len(answers)) | |
print ("answer: '{}'".format(answer)) | |
print ("question: '{}'".format(question)) | |
print () | |
question = question[::-1] if CONFIG.inverted else question | |
questions.append(question) | |
return questions, answers | |
def train_speller_w_all_data(): | |
"""Train the speller if all data fits into RAM""" | |
questions, answers = generate_news_data() | |
chars_answer = set.union(*(set(answer) for answer in answers)) | |
chars_question = set.union(*(set(question) for question in questions)) | |
chars = list(set.union(chars_answer, chars_question)) | |
X_train, X_val, y_train, y_val, y_maxlen, ctable = vectorize(questions, answers, chars) | |
print ("y_maxlen, chars", y_maxlen, "".join(chars)) | |
model = generate_model(y_maxlen, chars) | |
iterate_training(model, X_train, y_train, X_val, y_val, ctable) | |
def scoreText(originalText, correctedText): | |
X = originalText | |
Y = correctedText | |
X = re.sub('[^a-zA-Z]', ' ', X ) | |
X = re.sub(r'\s+', ' ', X) | |
X = X.strip() | |
bagOfWordsX = X.split() | |
Y = re.sub('[^a-zA-Z]', ' ', Y ) | |
Y = re.sub(r'\s+', ' ', Y) | |
Y = Y.strip() | |
bagOfWordsY = Y.split() | |
ExtraWords = [x for x in bagOfWordsY if x not in bagOfWordsX] | |
X = len(ExtraWords) | |
N = len(bagOfWordsX) | |
return (X-N)*100/N | |
def train_speller(from_file=None): | |
"""Train the speller""" | |
if from_file: | |
model = load_model(from_file) | |
else: | |
model = generate_model(CONFIG.max_input_len, chars=read_top_chars()) | |
itarative_train(model) | |
if __name__ == '__main__': | |
download_the_news_data() | |
uncompress_data() | |
preprocesses_data_clean() | |
preprocesses_data_analyze_chars() | |
preprocesses_data_filter() | |
preprocesses_split_lines()# --- Choose this step or: | |
preprocesses_split_lines2() | |
preprocesses_split_lines4() | |
preprocess_partition_data() | |
train_speller(os.path.join(DATA_FILES_FULL_PATH, "keras_spell_e15.h5")) | |
# train_speller() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment