Skip to content

Instantly share code, notes, and snippets.

@anmolj7
Created November 20, 2018 21:02
Show Gist options
  • Save anmolj7/c995466bfcb03077dd677b9ac82fd8af to your computer and use it in GitHub Desktop.
Save anmolj7/c995466bfcb03077dd677b9ac82fd8af to your computer and use it in GitHub Desktop.
#This code is written and tested in python 2.7
#The library NLTK has to be installed first.
import re, nltk, heapq
class Summary:
def summary(self, article_text, n=5): # n indicates the number of lines of summary required
# article_text = re.sub(r'\[[0-9]*\]', ' ', text)
# article_text = re.sub(r'\s+', ' ', article_text)
formatted_article_text = re.sub('[^a-zA-Z]', ' ', article_text )
formatted_article_text = re.sub(r'\s+', ' ', formatted_article_text)
sentence_list = nltk.sent_tokenize(article_text)
stopwords = nltk.corpus.stopwords.words('english')
word_freq = {}
for word in nltk.word_tokenize(formatted_article_text):
if word not in stopwords:
if word not in word_freq.keys():
word_freq[word] = 1
else:
word_freq[word] += 1
maximum_freq = max(word_freq.values())
for word in word_freq.keys():
word_freq[word] = (word_freq[word]/float(maximum_freq))
sentence_scores = {}
for sent in sentence_list:
for word in nltk.word_tokenize(sent.lower()):
if word in word_freq.keys():
if len(sent.split(' ')) < 30:
if sent not in sentence_scores.keys():
sentence_scores[sent] = word_freq[word]
else:
sentence_scores[sent] += word_freq[word]
summary_sents = heapq.nlargest(n, sentence_scores, key=sentence_scores.get)
summary = ' '.join(summary_sents)
return summary
article_text = raw_input('Enter The Input Article Text: ')
S = Summary()
print(S.summary(article_text))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment