Last active
April 1, 2018 18:10
-
-
Save anna-hope/a3b4e2e7ff127121c937020c5cd87ace to your computer and use it in GitHub Desktop.
Hierarchical Attention Network (Yang et al. 2016) in PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Implementation of the Hierarchical Attention Network from Yang et al. 2016 | |
# https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf | |
# Anton Melnikov | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
class SequenceClassifierAttention(nn.Module): | |
# this follows the word-level attention from Yang et al. 2016 | |
# https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf | |
# we will be using the same module for sentence-level attention | |
def __init__(self, n_hidden, *, batch_first=False): | |
super().__init__() | |
self.mlp = nn.Linear(n_hidden, n_hidden) | |
# word context vector | |
self.u_w = nn.Parameter(torch.rand(n_hidden)) | |
self.batch_first = batch_first | |
def forward(self, X): | |
if not self.batch_first: | |
# make the input (batch_size, timesteps, features) | |
X = X.transpose(1, 0) | |
# get the hidden representation of the sequence | |
u_it = F.tanh(self.mlp(X)) | |
# get attention weights for each timestep | |
alpha = F.softmax(torch.matmul(u_it, self.u_w), dim=1) | |
# get the weighted representation of the sequence | |
# and then get the sum | |
# (add a size 1 dimension to alpha so each time step's features could be scaled) | |
weighted_sequence = X * alpha.unsqueeze(2) | |
out = torch.sum(weighted_sequence, dim=1) | |
return out, alpha | |
class HierarchicalAttentionNetwork(nn.Module): | |
def __init__(self, *, n_hidden: int, n_classes: int, | |
vocab_size, embedding_dim, embedding_weights=None, | |
padding_idx=None): | |
super().__init__() | |
self.embed = nn.Embedding(vocab_size, embedding_dim, | |
padding_idx=padding_idx) | |
if embedding_weights is not None: | |
self.embed.data.weight.copy_(embedding_weights) | |
self.word_encoder = nn.GRU(embedding_dim, n_hidden, bidirectional=True, | |
batch_first=True) | |
self.word_attention = SequenceClassifierAttention(n_hidden * 2, | |
batch_first=True) | |
self.sentence_encoder = nn.GRU(n_hidden * 2, n_hidden, bidirectional=True, | |
batch_first=True) | |
self.sentence_attention = SequenceClassifierAttention(n_hidden * 2, | |
batch_first=True) | |
self.out = nn.Linear(n_hidden * 2, n_classes) | |
def forward(self, X): | |
batch_size, n_sents, n_words = X.shape | |
encoded_sents_word = [] | |
sentence_alphas = [] | |
# there might be a more efficient way of encoding the sentences | |
# than a sentence at a time | |
for i in range(n_sents): | |
sentence_words = X[:,i,:] | |
words_embedded = self.embed(sentence_words) | |
words_encoded, _ = self.word_encoder(words_embedded) | |
sentence_vector, sentence_alpha = self.word_attention(words_encoded) | |
# unsqueeze the sentence vector to insert dummy "sentence timestep" dimension | |
# so that we can concatenate on it | |
encoded_sents_word.append(sentence_vector.unsqueeze(1)) | |
sentence_alphas.append(sentence_alpha) | |
encoded_sents_word = torch.cat(encoded_sents_word, dim=1) | |
encoded_sents, _ = self.sentence_encoder(encoded_sents_word) | |
encoded_docs, document_alpha = self.sentence_attention(encoded_sents) | |
out = self.out(encoded_docs) | |
return out, sentence_alphas, document_alpha | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment