Created
June 21, 2014 23:49
-
-
Save anonymous/24f82fc039956a29fd6e to your computer and use it in GitHub Desktop.
Pasted from IPython
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from numpy import matrix | |
matrix('1908 January 4.5 -5.6') | |
matrix("1908 'January' 4.5 -5.6") | |
matrix([4.5 -5.6],[2, 4]) | |
matrix([[4.5 -5.6],[2, 4]]) | |
matrix([[4.5 5.6],[2, 4]]) | |
matrix([[4.5, -5.6],[2, 4]]) | |
matrix([4.5, -5.6],[2, 4]) | |
matrix([[4.5, -5.6],[2, 4]]) | |
matrix([[4.5, -5.6],[2, 4]], header=['ss','b']) | |
matrix([[4.5, -5.6],[2, 4]], dtype=['ss','b']) | |
matrix([[4.5, -5.6],[2, 4]], dtype=('ss','b')) | |
import numpy | |
matrix([[4.5, -5.6],[2, 4]]) | |
matrix([[4.5, -5.6,6],[2, 4,5]]) | |
numpy.mat? | |
numpy.matrix? | |
matrix([[4.5, -5.6,6],[2, 4,5]]) | |
numpy.array([[4.5, -5.6,6],[2, 4,5]]) | |
x = numpy.array([[4.5, -5.6,6],[2, 4,5]]) | |
y = matrix([[4.5, -5.6,6],[2, 4,5]]) | |
y[0] | |
x[0] | |
numpy.array([[4.5, -5.6],[2, 4]], dtype=[('a','float'),('b','float')]) | |
numpy.array([(4.5, -5.6),(2, 4)] | |
, dtype=[('a','float'),('b','float')]) | |
numpy.array([(4.5, -5.6),(2, 4)], dtype=[('a','float'),('b','float')]) | |
numpy.array([(4.5, -5.6),(2, 4)], dtype=[('a','float'),('b','float')]) | |
g = numpy.array([(4.5, -5.6),(2, 4)], dtype=[('a','float'),('b','float')]) | |
g['a'] | |
g | |
numpy.hstack(g,[2,4]) | |
numpy.hstack(g) | |
numpy.hstack((g,[2,4])) | |
numpy.hstack((g,numpy.array([2,4]))) | |
numpy.array([2,4]) | |
g = numpy.array([(4.5, -5.6),(2, 4)], dtype=[('a','float'),('b','float')]) | |
f = numpy.array([(5, -6),(-2, 4)], dtype=[('a','float'),('b','float')]) | |
g | |
f | |
numpy.array(g,f) | |
numpy.hstack(g,f) | |
numpy.hstack((g,f)) | |
numpy.hstack((g,f))[0] | |
numpy.hstack((g,f))] | |
numpy.hstack((g,f))['a'] | |
numpy.array([('a', -6),('b', 4)], dtype=[('a','string'),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','string'),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','char'),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg'),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','string;),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','string'),('b','float')]) | |
numpy.array([(a, -6),(b, 4)], dtype=[('gg','string'),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','string'),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','string'),('b','float')])[0] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','object'),('b','float')])[0] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','object'),('b','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','object'),('b','float')])['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','object'),('b','float')])['gg'][0] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','object'),('b','float')])['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=object)['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=object) | |
numpy.array([('a', -6),('b', 4)], dtype=object)[0] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','float64'),('b','float')])['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','float64'),('b','float')])['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','|S14'),('b','float')])['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','|S14'),('ff','float')])['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','|S10'),('ff','float')])['gg'] | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','|S10'),('ff','float')]) | |
numpy.array([('a', -6),('b', 4)], dtype=[('gg','|S10'),('ff','float')]) | |
numpy.array([('a', '-6'),('b', 4)], dtype=[('gg','|S10'),('ff','float')]) | |
numpy.array([('a', '-6', 3),('b', 4, 5)], dtype=[('gg','|S10'),('ff','float'), ('hh','float')]) | |
numpy.array([('a', '-6', 3),('b', 4, 5)], dtype=[('gg','|S10'),('ff','float'), ('hh','float')])['hh'] | |
ls | |
%load temperature_prediction.py | |
from itertools import combinations | |
from operator import and_ | |
import sys | |
from numpy import array, hstack | |
# libraries enabled: numpy, scipy, sklearn, nltk | |
# testcases/minima.txt | |
class PredictTemp: | |
''' | |
Apply AND operator on subsets with given conditions | |
''' | |
def __init__(self, size, heads, ip): | |
self.N = size | |
self.data = array(ip, dtype=[(heads[0],'int'), (heads[1],'|S10'), (heads[2], 'float'), (heads[3], 'float')]) | |
print self.data | |
def predict_already(self): | |
[self.subsets.extend(list(combinations(self.parent, x))) \ | |
for x in xrange(2, self.N + 1)] | |
#print self.subsets | |
[self.results.append(reduce(and_, subset)) \ | |
for subset in self.subsets] | |
return min(self.result) | |
if __name__ == '__main__': | |
N = int(raw_input()) | |
assert 1<=N<=1500 | |
COL_HEADS = raw_input() | |
ans = [] | |
ip = [] | |
for i in xrange(N): | |
temp = raw_input().split() | |
assert len(temp) == 4 | |
#temp[0], temp[2], temp[3] = int(temp[0]), float(temp[2]), float(temp[3]) | |
#assert 1908<=int(temp[0])<=2013 and -75<=int(temp[2])<=75 and -75<=int(temp[3])<=75 | |
ip.append(temp) | |
PT = PredictTemp(N, COL_HEADS, ip) | |
# ans.append(PT.predict_already()) | |
# for i in ans: print | |
PredictTemp.predict_already() | |
ip | |
array(ip, dtype=[(heads[0],'int'), (heads[1],'|S10'), (heads[2], 'float'), (heads[3], 'float')]) | |
heads = 'yyyy month tmax tmin'.split() | |
heads | |
array(ip, dtype=[(heads[0],'int'), (heads[1],'|S10'), (heads[2], 'float'), (heads[3], 'float')]) | |
ip | |
array(ip, dtype=[(heads[0],'int'), (heads[1],'|S10'), (heads[2], 'float'), (heads[3], 'float')]) | |
array(ip) | |
array(ip)[0] | |
x = array(ip) | |
x[:,] | |
x[:,0] | |
x[:,1] | |
x[:,2] | |
x[:,3] | |
x[:,4] | |
x[:,3] | |
x[:,2] | |
x[:,2] | |
x.reshape(2,2) | |
x.reshape(4,2) | |
x.reshape(2,4) | |
x.reshape(4) | |
x.reshape() | |
x[:,[1,2]] | |
x[:,[2,3]] | |
x[:4,[2,3]] | |
x[,[2,3]] | |
x[:,[2,3]] | |
print str(x) | |
x | |
x.clip(0,1) | |
x[:,[2,3]].clip(0,1) | |
x[:,[2,3]] | |
x = array(ip) | |
x | |
x[:,[2,3]].clip(0,1) | |
str(x[:,[2,3]]).clip(0,1) | |
x[:,[2,3]].clip(0,1) | |
x[:,[2,3]] | |
from sklearn.preprocessing import Imputer | |
x[:,[2,3]] | |
Imputer(x[:,[2,3]]) | |
Imputer(x) | |
x[:,[2,3]] | |
x | |
Imputer(x) | |
c = Imputer(x) | |
c.missing_values | |
Imputer? | |
Imputer(x[:,[2,3]]) | |
x | |
Imputer(x) | |
x.clip(0,1) | |
x.clip? | |
x[:,[2,3]].clip(0,1) | |
x[:,[2,3]].clip([0,1]) | |
x[:,[2,3]].clip(0,1) | |
x[:3,[2,3]].clip(0,1) | |
x[:3,[2,3]] | |
x[:3,[2,3]].clip(0,1) | |
from sklearn.ensemble import RandomForestRegressor | |
x.shape[0] | |
x | |
x.shape[1] | |
x.shape[2] | |
x.shape[2][0] | |
x.shape[2] | |
x[2].shape[2] | |
x | |
x[:3,[2,3]].shape[1] | |
x.shape? | |
from sklearn.cross_validation import cross_val_score | |
from sklearn.cross_validation import cross_val_score | |
from sklearn.datasets import load_boston | |
dataset = load_boston() | |
dataset | |
import numpy as np | |
from sklearn.datasets import load_boston | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import Imputer | |
from sklearn.cross_validation import cross_val_score | |
rng = np.random.RandomState(0) | |
rng | |
X_full, y_full = dataset.data, dataset.target | |
n_samples = X_full.shape[0] | |
n_features = X_full.shape[1] | |
X_full | |
n_ss | |
n_samples | |
%paste | |
missing_rate = 0.75 | |
n_missing_samples = np.floor(n_samples * missing_rate) | |
n_missing_samples | |
%paste | |
missing_samples | |
missing_features = rng.randint(0, n_features, n_missing_samples) | |
missing_features | |
%paste | |
score | |
import sklearn | |
sklearn.__version__ | |
%paste |
arcolife
commented
Jun 21, 2014
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment